• Title/Summary/Keyword: AC Current

Search Result 2,318, Processing Time 0.03 seconds

Total AC Loss by simultaneously applied AC transport current and AC external magnetic field in BSCCO Tape

  • Park Myungjin;Lim Hyoungwoo;Cha Gueesoo;Lee Jikwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.10-13
    • /
    • 2005
  • Transport current and magnetic field which is generated by transport current make AC current - AC mag-netic field condition(AC-AC condition) in AC power application system using HTS tape. Therefore, characteristics of AC loss under the AC-AC condition are necessary to estimate AC loss of power device with accuracy such as HTS transformer. In this paper, we researched transport current loss, magnetization loss by perpendicular magnetic field and total loss which is represented as summation of both losses under the AC-AC condition in single HTS tape. As a result, magnetization loss showed increasing behavior under 65mT and decreasing behavior upper 65mT by influence of transport current. Transport current loss was increased continuously through out whole measurement ranges in the AC-AC condition. Total loss in HTS tape was dominated entirely by magnetization loss.

Selective detection of AC transport current distributions in GdBCO coated conductors using low temperature scanning Hall probe microscopy

  • Kim, Chan;Kim, Mu Young;Park, Hee Yeon;Ri, Hyeong-Ceoul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.26-29
    • /
    • 2017
  • We studied the distribution of the current density and its magnetic-field dependence in GdBCO coated conductors with AC bias currents using low temperature scanning Hall probe microscopy. We selectively measured magnetic field profiles from AC signal obtained by Lock-in technique and calculated current distributions by inversion calculation. In order to confirm the AC measurement results, we applied DC current corresponding to RMS value of AC current and compared distribution of AC and DC transport current. We carried out the same measurements at various external DC magnetic fields, and investigated field dependence of AC current distribution. We notice that the AC current distribution unaffected by external magnetic fields and preserved their own path on the contrary to DC current.

Corrosion Rate of Buried Pipeline by Alternating Current

  • Song, H.S.;Kim, Y.G.;Lee, S.M.;Kho, Y.T.;Park, Y.S.
    • Corrosion Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • An alternating current (AC) corrosion on buried pipeline has been studied using coupon and ER probe. Coupons and ER probes were applied to the sites from high value of AC voltage to low value based on the survey of AC voltages on buried gas transmission pipeline over the country. Parameters such as AC current density of coupon, AC voltage, cathodic protection potential, soil resistivity and frequency were monitored continually. Corrosion induced by AC was observed even under cathodically protected condition that met cathodic protection criterion (; below -850 mV vs. CSE). Corrosion rate was affected mainly not by AC voltage but by both of frequency and AC current density. An experimental corrosion rate relation could be obtained according to effective AC current density, in which AC corrosion rate increased linearly with effective AC current density, and its slope was 0.619 in coupon method and 0.885 in ER probes.

DSP-based Current Programmed Control of Three Phase PWM AC-AC Boost Converter (3상 PWM AC-AC 부스트 컨버터의 DSP 기반 전류 프로그램 제어)

  • Choi Nam-Sup;Li Yulong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.27-32
    • /
    • 2006
  • In this paper, a new scheme of current programmed control for three phase PWM AC-AC converter is presented. Compared to duty-ratio voltage control, current programmed control has several advantages such as reduction of system order, inherent current protection and robust output. By considering only the magnitude components, a similar scheme in the DC-DC converter can be extended to the three phase PWM AC-AC converter. The proposed current programmed control will be well adopted into various converter topologies though three phase PWM AC-AC boost converter is treated as an example. The converter analysis is carried out by applying the vector DQ transformation to obtain physical insight into the converter operation and to establish some important characteristic equations for control purpose. The experiment results show the validity of the proposed scheme.

Suppression of Leakage Current and Distortion in Variable Capacitance Devices and their Application to AC Power Regulators

  • Katsuki, Akihiko;Oki, Takuya
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • The quantity of alternating current (AC) leakage and the value of distortion factor in capacitor currents are discussed with regard to a new power component called variable capacitance device (VCD). This component has terminals for controlling its capacitance. Nonlinear dielectric characteristics are utilized in this device to vary the capacitance. When VCD operates in an AC circuit, the AC leakage from this device through direct current (DC) control voltage source increases according to the conditions of DC control voltage and so on. To solve this problem, we propose techniques for suppressing AC leakage. Although VCD has strong nonlinear characteristics, the current through the capacitor is not distorted significantly. The relations between AC leakage and the distortion in current waveforms are investigated. An application example for an AC power regulator is also introduced to evaluate the distortion in waveforms.

Corrosion Rate of Buried Pipeline by Induced Alternating Current (교류가 유도되는 매설배관에서의 교류 부식속도 측정에 관한 연구)

  • Song H. S.;Kim Y. G.;Lee S. M.;Kho Y. T.;Park Y. S.
    • 한국가스학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.45-57
    • /
    • 2001
  • An alternating current (AC) corrosion using coupon has been studied. Coupons were applied in terms of AC voltage from high value to low value through the survey of AC voltages on buried gas transmission pipeline over the country. Parameters such as AC current density of coupon, AC voltage, cathodic protection potential, soil resistivity and frequency were monitored continually. Corrosion induced by AC was observed even under cathodically protected condition that met cathodic protection criterion(: below -850mv vs. CSE). Corrosion rate was affected mainly not by AC voltage but by both of frequency and AC current density. An experimental corrosion rate relationship could be obtained statistically, in which AC corrosion rate increased linearly with effective AC current density and its slope was 0.619.

  • PDF

AC Loss Characteristic in the Fault Current Limiting Elements of a Coil Type (코일형 한류소자의 교류손실 특성)

  • Ryu, Kyung-Woo;Ma, Yong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.370-374
    • /
    • 2005
  • AC loss of a superconducting conductor has a strong influence on the economic viability of a superconducting fault current limiter, which offers an attractive means to limit short circuit current in power systems. Therefore, the AC loss characteristics in several fault current limiting elements of a coil type have been investigated experimentally. The test result shows that AC losses measured in the fault current limiting elements depend on arrangement of a voltage lead. The AC loss of a bifilar coil is smallest among the fault current limiting elements of the coil type. The measured AC loss of the bifilar coil is much smaller than that calculated from Norris's elliptical model. However, the loss measured in a meander, which is frequently used in a resistive fault current limiter, agrees well to the theoretical one.

Design of active power factor control AC/DC converter having current control loop with no compensator (전류 제어 루프에 보상을 행하지 않는 능동 역률 제어 AC/DC 컴버터의 제어기 설계)

  • 이인호;김성환;유지윤;박귀태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.216-223
    • /
    • 1996
  • The active power factor control AC/DC converter needs a current loop compensator to obtain better dynamic characteristics and power factor performance, but the optimal design of a current loop compensator is difficult because the AC/DC converter is a nonlinear system having periodically varying poles and zeros. The predictive current control scheme generates a control input using the dynamic equations of the AC/DC converter so that the dynamic of the AC/DC converter is included in the controller and the necessary bandwidth and the gain characteristics of the current control loop are satisfied. And as a result, a compensator becomes unnecessary and the current loop shows the improved current loop characteristics. In this paper, a power factor controller without current loop compensator by adopting a predictive current control scheme is designed and the designed power factor controller is modelled by using a small signal perturbation modelling technique, and simulated to investigate its small signal characteristics. A 200 W power factor control AC/DC converter is built to verify the effectiveness of the proposed power factor controller.

  • PDF

Effect of Conductor's Arrangement and Current Direction on AC Loss Characteristics of a Fault Current Limiting Coil (도체의 배열 및 전류방향이 코일형 한류소자의 교류손실 특성에 미치는 영향)

  • Ma Y. H.;Ryu Kyung-Woo;Park K. B.;Oh Il-Sung
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.3
    • /
    • pp.17-20
    • /
    • 2005
  • AC loss of a high $T_c$ superconducting conductor has a strong influence on the economic viability of a superconducting fault current limiter, which offers an attractive means to limit short circuit current in the power systems. Therefore, several samples of the fault current limiting coils have been fabricated and the effect of conductor's arrangement and current direction on AC loss characteristics investigated experimentally The test result shows that the AC losses measured in the fault current limiting coils depend significantly on the conductor's arrangement. Futhermore, they are also considerably influenced by the conductor's current direction. The AC loss measured in the face-to-face arrangement is smallest among the fault current limiting coil samples.

Effect of the Neighboring Tape′s AC Currents on Transport Current Loss of a Bi-2223 Tape (인접 교류전류가 Bi-2223테이프의 통전손실에 미치는 영향)

  • 류경우;최병주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.251-256
    • /
    • 2001
  • Bi-2223 tapes have been developed for low-field power applications at liquid nitrogen temperature. When the Bi-2223 tapes are used in an application such as a power transmission cable or a power transformer, they are supplied with an AC transport current simultaneously. AC loss taking into account such real applications is a crucial issue for power applications fo the Bi-2223 tapes to be feasible. In this paper, the transport losses for different AC current levels and arrangements of the neighboring tapes have been measured in a 1./5 m long Bi-2223 tape. The significant increase of the transport losses due to neighboring tape's AC currents is observed. An increase of the transport losses caused by a decrease of the Bi-2223 tape's critical current is a minor effect. The measured trasprot losses could not be explained by a dynamic resistance loss based on DC voltage-current characteristics in combination with the neighboring tape's AC currents.The trasport losses do not depend on the frequency of the neighboring tape's AC currents but is arrangements in the range of small current especially.

  • PDF