• Title/Summary/Keyword: AC 서보

Search Result 131, Processing Time 0.024 seconds

Transient Magnetic Analysis of AC Servo Motor Using FEM coupled with External Circuit Equation (외부회로 방정식과 유한요소법을 이용한 AC 서보전동기의 과도자계 해석)

  • Yeon, Jae-Wook;Kim, Young-Bong;Hwang, Eun-Sik;Shin, Pan-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.36-38
    • /
    • 1995
  • AC servo motors are widely used for various mechatronic devices such as FA, OA and robot machines. To obtain more accurate simulation results, a method of analysis for AC servo motor is described using transient magnetic formulation coupled with external circuit equation of the motor. The external circuit of the motor to be analyzed is described using FLUX2D program and linked to multiple finite element regions. The simulation results show that transient magnetic analysis coupled with extenal circuit has more accurate than those results from magnetostatic.

  • PDF

A study on the torque characteristic of AC servo system by phase advance control (진상각 제어에 따른 AC 서보 모터의 토오크 특성에 관한 연구)

  • 임윤택;손명훈;허욱열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.393-400
    • /
    • 1992
  • The DC(Direct-Current) servo motor has widely used for many application areas, FA(Factory Automation), OA(Office Automation) and home applications. But DC servo motor needs periodical inspection because it has brush and commutator. Recently, AC servo motor has expanded it's application areas due to for the development of the power semi-conductor and control technology. But it has large torque ripple for it's small number of commutation. And it also has cogging torque due to permanent magenet rotor. Therefore it can't run balence rotarion. Many torque ripple reduction methods are published. In this paper, phase advanced method adopted for torque ripple reduction of AC servo motor. In this research, AC servo motor torque characteristic variation surveied under the phase advance control through the computer simulation. Under the simulation, the load inertia varied from 0.0001[Kg.m$^{2}$] to 0.0314[Kg.m$^{2}$]. The result os nonlinear simulation, torque and speed ripple of AC servo motor under the phase advance control reduced approximately 50[%] and 10[%]. And maximum torque of AC servo motor under phase advance control condition increased about 5[%] as compare with fixed switching time.

  • PDF

Design of on Adaptive Current Controller for a PMSM AC Servo Motor (PMSM 교류 서보모터의 적응형 전류 제어기 설계)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.73-81
    • /
    • 2007
  • To improve the capability of instantaneous torque control, a design method of an MRAC-based adaptive current controller for a PMSM servo motor is proposed. In the synchronous frame current controller, a new control inputs can be obtained through the decoupling compensation. Using this, a desired controller bandwidth can be assigned However, the control performance may be degraded due to disturbances caused by the parameter variations or dead time of the switch. To improve these drawbacks, an adaptive current controller is proposed and the design method is obtained using the hyperstability theory. The asymptotic stability is proved and the effectiveness is verified through simulations and experiments using DSP TMS320C31.

AC Servo Motor Control Using Low Voltage High Performance DSP (저전압 고성능 DSP를 이용한 AC 서보모터 제어)

  • 최치영;홍선기
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.1
    • /
    • pp.21-26
    • /
    • 2004
  • Recently with the development of power switching device and DSP which has peripheral devices to control AC servo system, the servo technology has met a new development opportunity. Those things make it possible to reduce the time of developing a AC servo system. Fixed point DSP such as TMS320F240x, and TMS320F28x series have a disadvantage in calculating floating number where TMS320C32 or TMS320C31 are floating point DSP. However they usually become a complex hardware system to implement the AC servo system and it increases the cost. In this study, a DSP based AC servo system with a 3-phase PMSM is proposed. The newly produced DSP TMX320F28l2-version C which has the performance of fast speed, 150MIPS, and a rich peripheral interface such as a 12bit high speed AD converter, QEP(Quadrature Encoder Pulse) circuit, PDPINT(Power Drive Protect Interrupt), SVPWM module and dead time module are used. This paper presents a method to overcome fixed point calculating using scaling all parameters. Also space vector pulse width modulation (SVPWM) using off-set voltage and a digital PI control are implemented to the servo system.

  • PDF

Multiple-Axes Velocity-Synchronizing Control of AC-Servomotor Load System for Injection Process (사출공정을 위한 AC 서보모터-부하계의 다축 속도 동기제어)

  • Jon, Yun-Son;Jung, Kwon;Choi, Jang Hoon;Ahn, Hyun;Lee, Hyeong Cheol;Kim, Young Shin;Hong, Seong Ho;Cho, Seung Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.8
    • /
    • pp.719-726
    • /
    • 2015
  • This paper presents a velocity-synchronizing control for the multiple axes of an injection unit; based on MBS, a virtual design model has been developed for the multiple-axes servomechanism. Prior to the design of the controller, a linear plant model was derived via open-loop response simulations. To synchronize the motions of the multiple axes, a cross-type synchronizing controller was designed and combined with the PID control to accommodate any parameter mismatches among the multiple axes. From the tracking control simulations, a significant reduction of both velocity-tracking and position-tracking errors was achieved through the use of the proposed control scheme.

Speed Control of AC Servo Motor with Loads Using Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 부하를 갖는 교류 서보 전동기의 속도제어)

  • Gang, Yeong-Ho;Kim, Nak-Gyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.8
    • /
    • pp.352-359
    • /
    • 2002
  • A neuro-fuzzy controller has some problems that he difficulty of tuning up the membership function and fuzzy rules, long time of inferencing and defuzzifying compare to PID. Also, the fuzzy controller's own defect as a PD controller has. In this study, it is proposed two methods to solve these problems. The first method is that inner fuzzy rules are tuned up automatically by the back propagation learning according to error patterns. And the second method is a new type defuzzification method that shorten the calculation time of an inferencing and a defuzzifying. In this study, it is designed the new type neuro-fuzzy controller that improves the fast response and the stability of a system by using the proposed methods. And, the designed controller is named EPLNFC(Error pattern Learning Neuro-Fuzzy Controller). To evaluate the fast response and the stability of EPLNFC designed in this study, EPLNFC is applied to a speed control of a DC motor and AC motor.

Automatic Control System for the Stringing Transmission Wire by the Measured Tension (장력측정에 의한 가설 송전선의 시스템 자동화)

  • Hong, Jeng-Pyo;Hong, Soon-Ill
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.31-37
    • /
    • 2008
  • As transmission line is installed by manual operation, it is necessary to scheme the automatic system for stringing transmission wire. For this necessity, the objective of this paper is developed automatic control system for a stringing of transmission wire. In this paper, transmission wire with suspended pattern and ac servo motor for torque generating are modeled. On the basis of wire model, algorithms to determine the reference tension is presented, so as the dip of transmission wire is keep constancy. The control scheme is proposed by the ac servo motor for torque generation and a load cell for a detected tension of transmission wire and implemented. We experimentally show that the performance of the tension response is satisfactory. And also proposed scheme verified the utilities for tension control of transmission wire.

Speed control of AC servo system using a sliding control techniques (슬라이딩 제어기법을 이용한 교류 서보 시스템의 속도제어)

  • Lee, Je-Hie;Huh, Uk-Youl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.115-120
    • /
    • 1996
  • In this paper, a sliding mode controller which is characterized by high accuracy, fast response and robustness is applied to speed control of AC-SERVO motor. The control input is changed to the continuous one in the boundary layer to reduce the chattering phenomenon, and the boundary layer converges to zero when the state variables of system reach to steady state values. The integral compensator is added to reduce steady state error and to provide the continuous torque reference. The acceleration which is necessary for the sliding plane is estimated by an obsever. Sliding surface is included in control input to enhance the robustness and transient response without increasing sliding mode controller gain. The proposed controller is implemented by DSP(digital signal processor). The effectiveness of the proposed scheme is demonstrated through experimental works.

  • PDF

Speed Control of AC Servo Motor Using Neural Network (교류 서보 전동기의 속도제어를 위한 뉴러퍼지 관측기설계)

  • Ban, Gi-Jong;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.158-160
    • /
    • 2006
  • In this paper, a neuro-fuzzy observer system is designed using neuro-fuzzy system for speed control of AC servo motor. This neuro-fuzzy observer is proposed to with the problems occur in the Luenberger observer and sliding observer. The problems of Luenberger and sliding observer are to have to know the dynamics and internal parameters of the system. Performance of the neuro-fuzzy observer system has verified through the experiment with dynamometer load. It is shown that feasibility of the neuro-fuzzy observer is verified.

AC Servo Motor Controller for Driving Cartesian Coordinate Type Robot Using Neural Networks (신경회로망을 이용한 평면 좌표계형 로봇구동용 교류서보전동기 제어기)

  • 김평호;서진연;김대곤;이강연;백형래
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.14-17
    • /
    • 1999
  • This paper describes the controller for the improving speed control the AC servo motor. The microprocessor provides an output to the difference in command. The servo system improves the characteristics of speed control. When the motor is running at the same speed as set by the reference signal, the speed encoder also provides a signal the same frequency. Thus, the microprocessor controlled digital techniques enable to realize the flexible performance and control which was possible with time constant. We can know that PI control using neural networks by 80196 can control efficiently speed of AC Servo motor. Finally experimental results prove excellent performance of this control system. The system can be adaptable to CNC machine.

  • PDF