• 제목/요약/키워드: ABS algorithm

검색결과 49건 처리시간 0.022초

이종 네트워크 하향링크의 셀간 간섭 조정 및 사용자 스케줄링을 위한 저복잡도 알고리즘 (A Low-Complexity Algorithm for Inter-Cell Interference Coordination and User Scheduling in Downlink Heterogeneous Networks)

  • 박진현;이재홍
    • 전자공학회논문지
    • /
    • 제51권6호
    • /
    • pp.9-17
    • /
    • 2014
  • 이종 네트워크(HetNet)란 매크로셀 내에 소형셀이 혼재한 네트워크이다. 이종 네트워크에서는 대형셀로부터 소형셀 사용자에게 미치는 간섭이 소형셀 사용자의 성능을 열화시키는 주 원인 중 하나이며, 이 간섭을 줄이기 위해 향상된 셀간 간섭 조정기법(eICIC)이 필요하다. 기존의 eICIC 관련 연구에서는 프레임별 채널 변화를 거의 고려하지 않고 네트워크의 장기 처리율을 최대화하는 데 치중되어 성능 향상이 제한적이었다. 이 논문에서는 네트워크 전체 효용을 최대화하기 위해 매 프레임마다 동적으로 셀간 간섭을 제어하고 사용자를 스케줄링하며, 전수검색보다 계산 복잡도가 낮은 새로운 알고리즘을 제안한다. 제안된 알고리즘이 기존 알고리즘보다 네트워크 전체 처리율을 향상시키며, 사용자의 수가 많을 때 사용자간 공평성을 향상시킴을 컴퓨터 모의실험을 통해 보인다.

LRF 를 이용한 이동로봇의 실시간 차선 인식 및 자율주행 (A Real Time Lane Detection Algorithm Using LRF for Autonomous Navigation of a Mobile Robot)

  • 김현우;황요섭;김윤기;이동혁;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제19권11호
    • /
    • pp.1029-1035
    • /
    • 2013
  • This paper proposes a real time lane detection algorithm using LRF (Laser Range Finder) for autonomous navigation of a mobile robot. There are many technologies for safety of the vehicles such as airbags, ABS, EPS etc. The real time lane detection is a fundamental requirement for an automobile system that utilizes outside information of automobiles. Representative methods of lane recognition are vision-based and LRF-based systems. By the vision-based system, recognition of environment for three dimensional space becomes excellent only in good conditions for capturing images. However there are so many unexpected barriers such as bad illumination, occlusions, and vibrations that the vision cannot be used for satisfying the fundamental requirement. In this paper, we introduce a three dimensional lane detection algorithm using LRF, which is very robust against the illumination. For the three dimensional lane detections, the laser reflection difference between the asphalt and lane according to the color and distance has been utilized with the extraction of feature points. Also a stable tracking algorithm is introduced empirically in this research. The performance of the proposed algorithm of lane detection and tracking has been verified through the real experiments.

Development of the Algorithm for Optimizing Wavelength Selection in Multiple Linear Regression

  • Hoeil Chung
    • Near Infrared Analysis
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 2000
  • A convenient algorithm for optimizing wavelength selection in multiple linear regression (MLR) has been developed. MOP (MLP Optimization Program) has been developed to test all possible MLR calibration models in a given spectral range and finally find an optimal MLR model with external validation capability. MOP generates all calibration models from all possible combinations of wavelength, and simultaneously calculates SEC (Standard Error of Calibration) and SEV (Standard Error of Validation) by predicting samples in a validation data set. Finally, with determined SEC and SEV, it calculates another parameter called SAD (Sum of SEC, SEV, and Absolute Difference between SEC and SEV: sum(SEC+SEV+Abs(SEC-SEV)). SAD is an useful parameter to find an optimal calibration model without over-fitting by simultaneously evaluating SEC, SEV, and difference of error between calibration and validation. The calibration model corresponding to the smallest SAD value is chosen as an optimum because the errors in both calibration and validation are minimal as well as similar in scale. To evaluate the capability of MOP, the determination of benzene content in unleaded gasoline has been examined. MOP successfully found the optimal calibration model and showed the better calibration and independent prediction performance compared to conventional MLR calibration.

MAXIMUM BRAKING FORCE CONTROL UTILIZING THE ESTIMATED BRAKING FORCE

  • Hong, D.;Hwang, I.;SunWoo, M.;Huh, K.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.211-217
    • /
    • 2007
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS (Anti-lock Brake System) systems. In realizing the wheel slip control systems, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance and stability enhancement. In this paper, a robust wheel slip controller is developed based on the adaptive sliding mode control method and an optimal target slip assignment algorithm is proposed for maximizing the braking force. An adaptive law is formulated to estimate the braking force in real-time. The wheel slip controller is designed based on the Lyapunov stability theory considering the error bounds in estimating the braking force and the brake disk-pad friction coefficient. The target slip assignment algorithm searches for the optimal target slip value based on the estimated braking force. The performance of the proposed wheel slip control system is verified in HILS (Hardware-In-the-Loop Simulator) experiments and demonstrates the effectiveness of the wheel slip control in various road conditions.

Implementation of Intelligent Electronic Acupuncture Needles Based on Bluetooth

  • Han, Chang Pyoung;Hong, You Sik
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.62-73
    • /
    • 2020
  • In this paper, we present electronic acupuncture needles we have developed using intelligence technology based on Bluetooth in order to allow anyone to simply receive customized remote diagnosis and treatment by clicking on the menu of the smartphone regardless of time and place. In order to determine the health condition and disease of patients, we have developed a software and a hardware of electronic acupuncture needles, operating on Bluetooth which transmits biometric data to oriental medical doctors using the functions of automatically determining pulse diagnosis, tongue diagnosis, and oxygen saturation; the functions are most commonly used in herbal treatment. In addition, using fuzzy logic and reasoning based on smartphones, we present in this paper an algorithm and the results of completion of hardware implementation for electronic acupuncture needles, appropriate for the body conditions of patients; the algorithm and the hardware implementation are for a treatment time duration by electronic acupuncture needles, an automatic determinations of pulse diagnosis, tongue diagnosis, and oxygen saturation, a function implementation for automatic display of acupuncture point, and a strength adjustment of electronic acupuncture needles. As a result of our simulation, we have shown that the treatment of patients, performed using an Electronic Acupuncture Needles based on intelligence, is more efficient compared to the treatment that was performed before.

타이어 뉴메틱 트레일 정보를 활용한 횡방향 타이어 노면 마찰 계수에 관한 연구 (A Study on Lateral Tire-road Friction Coefficient Estimation Using Tire Pneumatic Trail Information)

  • 한경석;최세범
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.310-318
    • /
    • 2016
  • The demands for vehicle safety systems such as ABS and ESC have been increased. Accurate vehicle state estimation is required to realized the abovementioned systems and tire-friction coefficient is crucial information. Estimation of lateral tire-road friction coefficient using pneumatic trail information is mainly dealt in this paper. Pneumatic trail shows unique characteristics according to the wheel side slip angle and these property is highly sensitive to vehicle lateral motion. The proposed algorithm minimizes the use of conventional tire models such as magic formula, brushed tire model and Dugoff tire model. The pure side slip maneuver, which means no longitudinal dynamics, is assumed to achieve the ultimate goal of this paper. A simulation verification using Carsim and Simulink is performed and the results show the feasibility of the proposed algorithms.

RESISTANCE ESTIMATION OF A PWM-DRIVEN SOLENOID

  • Jung, H.G.;Hwang, J.Y.;Yoon, P.J.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.249-258
    • /
    • 2007
  • This paper proposes a method that can be used for the resistance estimation of a PWM (Pulse Width Modulation)-driven solenoid. By using estimated solenoid resistance, the PWM duty ratio was compensated to be proportional to the solenoid current. The proposed method was developed for use with EHB (Electro-Hydraulic Braking) systems, which are essential features of the regenerative braking system of many electric vehicles. Because the HU (Hydraulic Unit) of most EHB systems performs not only ABS/TCS/ESP (Electronic Stability Program) functions but also service braking function, the possible duration of continuous solenoid driving is so long that the generated heat can drastically change the level of solenoid resistance. The current model of the PWM-driven solenoid is further developed in this paper; from this a new resistance equation is derived. This resistance equation is solved by using an iterative method known as the FPT (fixed point theorem). Furthermore, by taking the average of the resistance estimates, it was possible to successfully eliminate the effect of measurement noise factors. Simulation results showed that the proposed method contained a sufficient pass-band in the frequency response. Experimental results also showed that adaptive solenoid driving which incorporates resistance estimations is able to maintain a linear relationship between the PWM duty ratio and the solenoid current in spite of a wide variety of ambient temperatures and continuous driving.

지능형 알고리즘을 이용한 재질별 검정색 플라스틱 분류기 설계 (Design of Classifier for Sorting of Black Plastics by Type Using Intelligent Algorithm)

  • 박상범;노석범;오성권;박은규;최우진
    • 자원리싸이클링
    • /
    • 제26권2호
    • /
    • pp.46-55
    • /
    • 2017
  • 본 연구에서는 레이저유도붕괴분광(Laser Induced Breakdown Spectroscopy, LIBS)을 이용하여 방사형 기저함수 신경회로망(Radial Basis Function Neural Networks, RBFNNs) 분류기 설계방법론을 개발하고 실제 폐소형가전제품의 플라스틱 분류 시스템에 적용하였다. ABS, PP, PS와 같은 검정색 플라스틱을 구별하기 위해, 지능형 알고리즘 중 하나인 방사형 기저함수 신경회로망 분류기를 설계하였다. 획득한 입력변수는 주성분 분석법(Principal Component Analysis, PCA)을 이용하여 축소시켰으며, 군집화기법 중 하나인 K-means 클러스터링 방법을 이용해 여러 그룹으로 분할하였다. 전체 데이터는 학습 데이터와 테스트 데이터를 4:1의 비율로 나누었으며, 제안된 분류기의 성능 및 신뢰도를 평가하기 위하여 5-FCV(5-Fold Cross Validation) 기법을 사용하였다. 입력변수와 클러스터의 개수가 각각 5개인 경우, 제안된 분류기의 분류 성능은 96.78%로 나타났다. 또한, 제안된 분류기는 다른 분류기들과 비교하였을 경우 분류 성능의 관점에서 우수성을 보여주었다.

계절내-계절 기후예측의 딥러닝 기반 후보정을 위한 입력자료 전처리 기법 평가 (Investigating Data Preprocessing Algorithms of a Deep Learning Postprocessing Model for the Improvement of Sub-Seasonal to Seasonal Climate Predictions)

  • 정유란;이진영;김미애;손수진
    • 한국농림기상학회지
    • /
    • 제25권2호
    • /
    • pp.80-98
    • /
    • 2023
  • 본 연구에서는 계절내-계절(Subseasonal to seasonal, S2S) 기후예측의 주별 예측 성능을 개선하기 위해서 딥러닝 기반의 후보정(post processing) 기술을 개발하였다. 그 첫 단계로, 일 최고, 최저기온과 일 강수를 목표 변수로, 자료의 특성과 분포에 적합한 자료 변환 및 특성 공학 기법을 규명하고자 하였다. 먼저, 6개 개별 기후모델의 S2S 예측 자료를 딥러닝 모델에 입력하기 위한 훈련자료로 변환하고, 이로부터 다중모델앙상블(Multi-Model Ensemble, MME) 기반 훈련자료를 구축하였다. 참값(label)으로는 ECMWF의 ERA5 재분석 자료를 사용하였다. 자료 변환 알고리즘은 최고 및 최저 차이를 계산하여 입력자료의 범위를 변형시키는 MinMax 및 MaxAbs 변환, 표준편차를 이용하는 Standard 변환 및 분위수를 지정하여 변형하는 Robust와 Quantile 변환으로 구성된 전처리 파이프라인을 구축하였으며, 변환된 훈련자료와 예측 변수와의 상관관계를 계산하여 순위에 따라 훈련자료의 특성을 선택하는 특성 선택 기법을 추가하였다. 본 연구는 U-Net 모델에 TimeDistributed wrapper를 모든 합성곱 층(convolutional layer)에 적용하여 활용하였다. 5개 알고리즘으로부터 변환된 6개 개별 기후모델 및 MME S2S 훈련자료(일 최고 및 최저기온, 강수)에 훈련 모델을 적용한 결과와 훈련 모델을 적용하지 않은 결과를 ERA5와의 공간상관계수(spatial Pattern Correlation Coefficient)를 계산하고 그 개선율인 기술 점수(skill score)를 평가한 결과, 일 강수의 PCC 기술 점수는 Standard 및 Robust 변환으로 처리된 것에서 전체 예측선행(1~4주)에 대해 모두 높았고, 일 최고 및 최저기온에서는 예측 선행시간 3~4주에서만 높게 나타났다. 또한, 일 강수에서 특성 선택에 따른 훈련자료의 차원 감소가 예측 성능 변화에 영향을 미치지 않는 것으로 나타났다. 일 최고 및 최저기온의 경우에는 특성 선택에 의한 훈련자료의 특성 정보 감소가 오히려 예측 성능을 저하시킬 수 있는 것으로 확인되었으며, 원시자료에서 예측성이 높은 1~2주 기온 예측 개선을 위한 적합한 전처리 변환 알고리즘이나 특성 선택을 찾을 수 없었다. 후속 연구에서는 원시 예측 성능이 강수에 비해 높으나 딥러닝 훈련 모델에 의한 후보정 효과가 미미한 예측 선행 1~2주 기온 예측의 저조 원인에 대해 탐색하고, 다양한 딥러닝 훈련 모델로의 적용 및 초매개변수 조정 등 학습 과정의 최적화를 통해 S2S 기후 예측 성능을 개선하고자 한다.