• Title/Summary/Keyword: ABS Brake

Search Result 103, Processing Time 0.037 seconds

A Study on Development of Real-Time Simulator for Electric Traction Control System (TCS(Traction Control System)을 위한 실시간 시뮬레이터 개발에 관한 연구)

  • Kim, Tae Un;Cheon, Seyoung;Yang, Soon Young
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.67-74
    • /
    • 2019
  • The automotive market has recently been investing much time and costs in improving existing technologies such as ABS (Anti-lock Braking System) and TCS (Traction Control System) and developing new technologies. Additionally, various methods have been applied and developed to reduce this. Among them, the development method using the simulation has been mainly used and developed. In this paper, we have studied a method to develop SILS (Software In the Loop Simulation) for TCS which can test various environment variables under the same conditions. We modeled hardware (vehicle engine and ABS module) and software (control logic) of TCS using MATLAB/Simulink and Carsim. Simulation was performed on the climate, road surface, driving course, etc. to verify the TCS logic. By using SILS to develop TCS control logic and controller, it is possible to verify before production and reduce the development period, manpower and investment costs.

Robust Wheel Slip Control for Brake-by-Wire System (Brake-by-Wire 시스템을 위한 강인한 휠 슬립 제어)

  • Hong Daegun;Huh Kunsoo;Kang Hyung-Jin;Yoon Paljoo;Hwang Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.102-109
    • /
    • 2005
  • Wheel-slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS systems. But, in order to achieve the superior braking performance through the wheel-slip control, real-time information such as the tire braking force is required. For example, in the case of EHB (Electro-Hydraulic Brake) systems, the tire braking force cannot be measured directly, but can be approximated based on the characteristics of the brake disk-pad friction. The friction characteristics can change significantly depending on aging of the brake, moisture on the contact area, heat etc. In this paper, a wheel slip The proposed wheel slip control system is composed of two subsystems: braking force monitor and robust slip controller In the brake force monitor subsystem, the tire braking forces as well as the brake disk-pad friction coefficient are estimated considering the friction variation between the brake pad and disk. The robust wheel slip control subsystem is designed based on sliding mode control methods and follows the target wheel-slip using the estimated tire braking forces. The proposed sliding mode controller is robust to the uncertainties in estimating the braking force and brake disk-pad friction. The performance of the proposed wheel-slip control system is evaluated in various simulations.

A Study on the design of ABS ECU for a commercial vehicle(BUS) and its control algorithm (상용차용 ABS의 ECU 설계 및 제어 알고리즘에 관한 연구)

  • Lee, Ki-Chang;Kim, Moon-Sup;Jeon, Jung-Woo;Hwang, Don-Ha;Park, Doh-Young;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.612-614
    • /
    • 2000
  • ABS(Anti-lock Braking System) is a device which prevents the lock-up of car wheels during emergency braking. It helps to maintain the steerability since the tire-road slip is controlled in an acceptable range. By maintaining the maximal frictional force during braking. ABS can reduce the braking distance. Recently, ABS is accepted as a standard equipment in vehicles, especially in commercial vehicles(bus and trucks). Commercial vehicles mostly use pneumatic pressure for braking. In this paper, ECU(Electronic Control Unit) for the anti-lock braking system of a commercial vehicle which is equipped with a full-air brake system and its control algorithms are presented.

  • PDF

A Study of ADS Slip Ratio Control using Solenoid Valve (전자밸브를 이용한 ABS 슬립율 제어에 관한 연구)

  • Choi, Jong-Hwan;Kim, Sung-Su;Yang, Soon-Yong;Park, Sung-Tae;Lee, Jin-Kul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.676-681
    • /
    • 2001
  • ABS is a safety device, which adds hydraulic system to the existing brake system to prevent wheel from locking, so we can obtain maximum braking force on driving. The hydraulic system to control braking pressure consists of sol-flow type using solenoid valve, flow control valve or consists of sol-sol type using two solenoid valve. In this paper, the hydraulic system in ABS is composed of sol type using a 3port-2position solenoid valve, and vehicle system is composed of 1/4 vehicle model. And slip ratio is controlled using PWM (Pulse-Width-Modulation) control algorithm. Braking friction coefficient and tracking friction coefficient which are described by slip ratio's function have maximum value when slip ratio has its value from 0.1 to 0.3. And slip ratio is controlled constantly in this boundary value even in the variation of road's condition in some boundary.

  • PDF

Manufacture of the 400 Series Steel Powder Sensor Ring for Use in an Antilock Brake System (400계열 스테인레스 스틸 분말을 사용한 ABS sensor Ring 제조)

  • 양현수;곽창섭;임종국
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.59-69
    • /
    • 1998
  • ABS sensor ring has been manufactured by P/M method using 400 series ferrite stainless steel. the results are as following : It is supposedly sufficient to use for control computer due to good experimental results of magnetic characteristics. Compared with sensor ring made by iron, 400 series ferrite stainless steel has shown a good corrosion resistance without an addition surface treatment. Thus the decreasing production process has been obtained. As a result of hardness and tensile test, 400 series ferrite stainless steel shown a good endurance when it is combined to C/V joint, and has a good hardness properties endurable In sand and pebble impact.

  • PDF

Implementation and Tests of Antilock Braking Algorithm for a heavy vehicle

  • Lee, Ki-Chang;Jeongwoo Jeon;Donha Hwang;Kim, Yongjoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.67.4-67
    • /
    • 2002
  • Antilock brake System (ABS) is a essential safety equipment for modern vehicles. It prevents wheels from being locked-up when emergency braking of a vehicle is required. So it can improves directional stability of the vehicle, shortens stopping distance. Heavy Vehicles such as trucks and buses use mainly pneumatic pressures for their braking systems, where pneumatic modulators control the flow rate of compressed air thus braking pressures in the wheels. In this paper, a antilock braking algorithm which is suitable for heavy vehicles was developed. This algorithm uses limit cycle of wheels and is implemented in the ABS ECU. The developed algorithm and ECU were tested in the labo..

  • PDF

Antilock Brake System 유압 조절기의 슬립율 제어 특성에 관한 연구

  • 김진한;김수태;심재진;최성대
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.177-181
    • /
    • 1992
  • For this study, a new hydraulic control unit which designed in compact compared to the currently manufactured hydraulic control unit for ABS has been introduced and its experimental model has been made. Based on the basic principle as ABS using braking force characteristics against slip ratio of tire, half car model bench tester were designed and made to make an analysis of braking effect of the new hydraulic control unit. Experiment for slip ratio characteristics of tire has been carried out using half car model bench tester and with the results of this experiment and control experiment of the new hyraulic control unit, the experiment result of the characteristics of tire and control experiment were compared to find out their correspondence. And furthermore, slip ratio characteristics of the new hydraulic control unit has been studied based on the experiment result of slip ratio characteristics of tire through simulation and compared with experiment result.

Effect on 400 series Ferrite Stainless Steel Corrosion Resistance of ABS Sensor Ring (400계열 FSTS의 내식성이 ABS 센서 링에 미치는 영향)

  • 양현수
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.3
    • /
    • pp.197-210
    • /
    • 2000
  • In this paper, sensor ring for antilock brake system was studied using the 400 series ferrite stainless steel powder. Because of more excellent corrosion resistance and mechanical characteristics than iron, sensor ring has been manufactured by P/M(Powder Metallurgy) method 400 series ferrite stainless steel. the results are following. 1, Compared with sensor ring made by iron, 400 series ferrite stainless steel has shown a good corrosion resistance without an addition surface treatment. thus the decreasing production process has been obtained. 2. The products before sintering are much more corrodible in the condition of spray test of salt water and ammonia than humidity and nitrogen condition.

  • PDF

Development of the 400 Series Stainless Steel Powder Sensor Ring for Use in an Antilock Brake System (400계열 스테인레스 스틸 분말을 사용한 ABS Sensor Ring 개발)

  • 양현수;곽창섭;김경환;임종국
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.60-66
    • /
    • 1998
  • ABS sensor ring has been manufactured by P/M method using 400 series ferrite stainless steel. The results are as following: It is supposedly sufficient to use for control computer due to good experimental results of magnetic characteristics. Compared with sensor ring made by iron, 400 series ferrite stainless steel has shown a good corrosion resistance without an addition surface treatment. Thus the decreasing production process has been obtained. As a result of hardness and tensile test, 400 series ferrite stainless steel shown a good endurance when it is combined to C/V joint, and has a good hardness properties endurable to sand and pebble impact.

  • PDF

Implementation of DAS for Performance Analysis of Heavy-Vehicle ABS (대형 차량용 ABS의 성능분석을 위한 DAS 구현)

  • Lee, Ki-Chang;Jeon, Jung-Woo;Nam, Taek-Kun;Hwang, Don-Ha;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2373-2375
    • /
    • 2002
  • 전자 제어식 미끄럼 방지 제동 장치(ABS, Anti-lock Brake System)를 장착한 차량의 실차 제동 시험은 시험용 차량을 비롯하여, 많은 분석장비를 필요로 한다. 이러한 고가의 장비는 구하기가 어려울 뿐만 아니라 사용방법을 학습하는 데에도 상당한 기간을 필요로 하므로, 개발중인 ABS에 대하여 적용해 보기에는 그 사용에 제약을 받는다. 본 논문에서는 개발중인 미끄럼방지 제동 알고리즘과 전자제어장치(ECU, Electronic Control Unit)를 대형 버스에 장착하여, 저 점착 노면에서 주행 시험을 시행하였고, 그 주행 기록의 분석을 위하여 DAS(Data Acquisition System)를 구현하였다. 개발 ABS 알고리즘 및 ECU의 기능과 성능 검증이 목적인 DAS는 부가적인 센서 및 고가의 장비를 사용하지 않고 제어보드와 휴대용 노트북 컴퓨터를 이용하였다. 고정밀도의 자료를 획득할 수는 없었지만, 개발 DAS를 이용한 차량 실차 제동 시험은 경제적이면서도 효과적인 ECU 및 알고리즘의 성능 분석을 이룰 수 있었다. 특히 개발 DAS는 제어 및 Data Acquisition을 동일한 보드를 사용하여 구현함으로써, ABS 장착 실차 주행 시험 결과를 제어알고리즘에 즉각적으로 반영시킨 수 있었다. 이러한 One Board System 및 On-Vehicle Programming을 이용한 방법은 개발 알고리즘의 빠른 Debugging 및 파라미터 조정(Tuning)을 가능하게 하였으므로, 실차 제동 시험을 위한 한정된 기간 내에 개발 ABS ECU 및 제어 알고리즘의 성능을 효과적으로 검증할 수 있었다.

  • PDF