• Title/Summary/Keyword: ABS Brake

Search Result 103, Processing Time 0.03 seconds

A Study on the Modelling and Control Method of an Anti - lock Brake System

  • Ki, Lim-Chul;Hoon, Song-Jeong;Suck, Boo-Kwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.112-112
    • /
    • 2001
  • An Anti-lock Brake System ABS is developed to increase the stability of vehicle and to reduce the stopping distance when braking manoeuvres by measuring the wheel and vehicle speed. An ABS mathematical model which describes the dynamics of vehicle and calculate the stopping distance, is explained in this paper. To proceed this study, a mathematical model is produced with simulink software package. Although the model considered here is relatively simple, it retains the essential dynamics of the system. The results are evaluated at the various driving or road conditions. The results from mathematical model show that ABS reduces the stopping distance at the various road conditions. This mathematical model could be ...

  • PDF

Design of a Robust Controller to Enhance Lateral Stability of a Four Wheel Steer Vehicle with a Nonlinear Observer (비선형 관측기를 이용한 사륜조향 차량의 횡방향 안정성 강화를 위한 강인 제어기 설계)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.120-127
    • /
    • 2007
  • This paper describes the development of a nonlinear observer for four wheel steer (4WS) vehicle. An observer is designed to estimate the vehicle variables difficult to measure directly. A brake yaw motion controller (BYMC), which uses a PID control method, is also proposed for controlling the brake pressure of the rear and inner wheels to enhance lateral stability. It induces the yaw rate to track the reference yaw rate, and it reduces a slip angle on a slippery road. The braking and steering performances of the anti-lock brake system (ABS) and BYMC are evaluated for various driving conditions, including straight, J-turn, and sinusoidal maneuvers. The simulation results show that developed ABS reduces the stopping distance and increases the longitudinal stability. The observer estimates velocity, slip angle, and yaw rate of 4WS vehicle very well. The results also reveal that the BYMC improves vehicle lateral stability and controllability when various steering inputs are applied.

Optimal torque control of noncontact type eddy current brake system (비접촉식 와전류형 제동 장치의 최적 토오크 제어)

  • 이갑진;박기환;류제하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.261-264
    • /
    • 1997
  • A contactless eddy current type braking system is developed to take advantages of the recent brake system which uses hydraulic force can show high efficiency in a certain velocity region, but not in a high velocity region, and has initial response delay time and pressure build-up time which make stopping distance longer. These are the limits of mechanical brake system of a contact type, which makes a concept brake system required. So, in this paper, the contactless brake system .of a inductive current type is chosen instead of hydraulic brake system. This brake system can be used almost forever for being no wear and contributed to lightening weight of a vehicle. Besides, the contactless brake system can be used as that of electric or solar car with anti-lock brake system. The analysis of induced electromotive force and braking torque obtained with theoretical approximate model, the design of a braking system and a nonlinear controller, and the results of simulation of the ABS, experiment are included.

  • PDF

EFFECT OF BRAKE PEDAL IMPEDANCE ON BRAKING PERFORMANCE IN EH-BBW SYSTEM

  • PARK S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.391-402
    • /
    • 2005
  • Despite its superior braking performance to conventional vehicles on test tracks, the performance of the ABS-equipped car seems disappointing on real highway. The poor braking performance results from questionable design of the human-machine interface(HMI) of the brake system. Force-displacement relation at the brake pedal has a strong effect on the braking performance. Recently developed brake-by-wire (BBW) system may allow us to tailor the force feel at the brake pedal. This study aims at exploring analytical ways of designing human-machine interface of BBW system. In this paper, mathematical models of brake pedal feel for electro-hydraulic BBW (EH-BBW) system are developed, and the braking motion and the characteristics of the driver's leg action are modeled. Based on the dynamic characteristics of the brake pedal and the driver, two new HMI designs for EH-BBW system are proposed. In the designs, BBW system is modeled as a type of master-slave teleoperator. The effectiveness of the proposed designs is investigated using driving simulation.

Calculation of Brake Onset Velocity for Non-ABS Vehicle on Dry Asphalt Pavement (건조한 노면에서 Non-ABS 차량의 제동시점 속도계산 방법)

  • Kim, Kee-Nam;Ok, Jin-Kyu;Kim, Min-Seok;Mun, Won-Kil;Park, Su-Jin;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.109-114
    • /
    • 2007
  • Skid mark and coefficient of friction are usually utilized to calculate the velocity and behavior of vehicles. For a critical case such as traffic accident reconstruction, however, the initial velocity of the car should be calculated precisely. In this study, the skid marks on dry asphalt pavement were measured, and the velocity at brake onset was precisely recovered. A passenger car with new tires and non-contact optical speedometer were set up for the tests. A new methodology to determine the more precise velocity for Non-ABS vehicle at braking onset were suggested.

A Simulation Program for the Braking Characteristics of 8$\times$4 Vehicles (8$\times$4 차량의 제동특성 시뮬레이션 프로그램 개발)

  • 서명원;박윤기;권성진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.119-128
    • /
    • 2001
  • Recently safety systems for the commercial vehicle have been rapidly developed. However, we still have many problems in the vehicle stability and the braking performance. Especially, a commercial vehicle may meet a dangerous braking condition when the vehicle is lightly loaded or empty and the road is wet or slippery. To design the air brake system for commercial vehicles, since the air brake system has many design variables, there must have been intensive researches on a method how to prevent dynamic instability and how to maximize the vehicle deceleration. In this study, mathematical models about an 8$\times$4 vehicle and an air brake system including an ABS controller have been constructed for computer simulation. Also, simple examples are applied to show the usefulness of the computer program. Designers can use this simulation program for understanding the braking characteristics of 8$\times$4 commercial vehicles such as trajectory, braking distance, longitudinal deceleration, lateral deceleration, and yaw rate on various road conditions.

  • PDF

A Study on the Implementation of Automatic parking brake system using In-Vehicle network (차량 네트워크를 이용한 자동 주차브레이크 시스템 구현)

  • 문용선;문창현;이명복;정철호;최형윤
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.733-739
    • /
    • 2004
  • As per the recent technology related to safety of vehicles, Active safety system is being developed in combination withthe technology of electronic system. For example, ABC(Active Body Control), ABS(Antilock Brake System), ACC(Adaptive Cruise Control) are representative of this system. This technology is based on an electronic system, and shares a lot of data through network-system invehicles. Therefore, the control-algorism and the practicable application are realized in this research in order that CAN, network system for vehicles can run the brake device, which is composed mechanically and hand-operated. Additionally the possibility is confirmed that this control-system can be compatible with the existing electronic system in vehicles.

A Study of Slip Ratio Control of 3 Port -2 Position Solenoid Valve using PWM Control

  • Kim, Jung-Hwan;Choi, Jong-Hwan;Lee, Jin-Kul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.170.3-170
    • /
    • 2001
  • Antilock brake system(ABS) prevent the wheels of road vehicle from locking up and skidding so that the braking force is from static friction instead of kinetic friction. Therefore ABS helps drivers maintain steering control during breaking situation particularly at an emergency stopping situation. So when trying to stop the road vehicle it is best to have the most friction possible for faster deceleration ABS keep the wheels turning which means there is more friction between the tires of vehicles and the road surface. Because of this advantage, ABS are now a commonly installed feature for passenger's safety in road vehicles. In this study, hydraulic system of ABS of vehicle is composed of 3port-2position solenoid valve. In order to minimize ...

  • PDF

Sliding Mode Control of the Vehicle ABS with a Disturbance Observer for Model Uncertainties (모델 불확실성에 대한 외란 관측기를 가진 차량 ABS의 슬라이딩 모드 제어)

  • Hwang Jin-Kwon;Song Chul-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.44-51
    • /
    • 2006
  • This paper addresses sliding mode control of the anti-lock braking system (ABS) with a disturbance observer for model uncertainties such as vehicle parameter variation, un-modeled dynamics, and external disturbances. By using a nominal vehicle model, a sliding mode controller is designed to achieve a desired wheel slip ratio for ABS control. To compensate the model uncertainties, a disturbance observer is introduced with the help of a transfer function of a hydraulic brake dynamics. A proposed sliding mode controller with a disturbance observer is evaluated through simulations for model uncertainties. The simulation results show that the disturbance observer can enhance performances of sliding mode control for ABS.

ABS Sliding Mode Control considering Optimum Road Friction Force of Tyre (타이어의 최적 노면 마찰력을 고려한 ABS 슬라이딩 모드 제어)

  • Kim, Jungsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.78-85
    • /
    • 2013
  • This paper presents the sliding mode control methods for anti-lock brake system (ABS) with the friction force observer. Using a simplified quarter car model, the sliding mode controller for ABS is designed to track the desired wheel slip ratio. Here, new method to find the desired wheel slip ratio which produces the maximum friction force between road and tire is suggested. The desired wheel slip ratio is varying according road and tire conditions to produce maximum friction force. In order to find optimum desired wheel slip ratio, the sliding mode observer for friction force is used. The proposed sliding mode controller with observer is evaluated in simulation, and the control design is shown to have high performance on roads with constant and varying adhesion coefficients.