• 제목/요약/키워드: ABS(Anti-lock Brake System)

검색결과 54건 처리시간 0.021초

ABS(Anti-Lock Brake System)의 실시간 시뮬레이터 개발 (Development of ABS(Anti-Lock Brake System) Real-Time Simulator)

  • 김중배
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.229-241
    • /
    • 1999
  • The paper describes the development of the ABS(Anti-Lock Bracke Sytem) real-time simulator which is composed of the real hydraulic modulator, the brake system, and the control software. This useful too supports the development enviornment of the ABS in great flexible mamer. It offers an efficient and cost-effective method of ABS development which includes the various realistic road conditons, the vehicle characteristics , and the brake characteristics. The performance of the ABS is compared with the normal braking results. Thepresented experimental results are braking on the high friction road, thetransient friction road(high to low , low to high), the split friction road, and the high friction road with steer angle. The paper shows the effectiveness and the safety of the ABS compared with the normal brake system , and the powerful and conventient tool in developing the ABS.

  • PDF

미끄럼 방지 제동시스템에 대한 실험적 고찰 (An Experimental Study of an Anti-lock Brake System)

  • 강성황;김재호
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.17-24
    • /
    • 2006
  • Anti-lock brake system(ABS) are designed to prevent wheel lock on all wheels of the vehicle by sensing wheel angular speed, processing the speed sensor signals in suitable digital electronic control circuits and comanding electrohydraulic actuators to control brake pressure. This study considers a control of ABS using wheel circumferential acceleration thresholds which avoids dangerous wheel locking due to excessive brake pressure during the vehicle braking and discusses the 3-channels, 3-sensors ABS system that employs "independent control" technique for the front wheels and "select low" technique for the rear wheels. The validities of the ABS such as vehicle stability, steerability and stopping distance during braking are assured through the vehicle tests on uniform asphalt straight roads.

제동압력 제한밸브의 모터싸이클 ABS에의 적용 (Application of a Brake Pressure Restriction Valve to a Motorcylce ABS)

  • 지동익;류제하;김호수;임재우;박종혁
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.130-136
    • /
    • 2001
  • This paper presents an of a brake pressure restriction valve to a motorcycle anti-lock brake system(ABS). In the conventional anti-lock brake system of automobiles, slip ratio as a control variable is actively controlled, which requires wheel speed sensors, ECU, and a pressure modulator. In the ABS valve that has been developed for use in motorcycles, however, the brake pressure that is close to the wheel locking pressure is preset by simple exercises and then the valve just allows to pass the wheel locking pressure and cutoff the remaining pressure. Simulation studies with a single wheel braking dynamics and lumped chassis model show that the pressure restriction valve has basic ABS functions as well as some robustness properties for the uncertain load and road conditions as well as various initial braking speeds. Field tests also show that the pressure restriction valve avoids the wheel locking effectively.

  • PDF

슬립률을 이용한 상용차용 공압식 브레이크 기반 ABS 알고리즘 개발 (Anti-lock Braking System for Commercial Vehicles with Pneumatic Brake System by Using Slip Ratio)

  • 김자유;권백순;이경수
    • 자동차안전학회지
    • /
    • 제12권2호
    • /
    • pp.21-26
    • /
    • 2020
  • This paper presents an anti-lock braking system for commercial vehicles with pneumatic brake system by using slip ratio. By virtue of system reliability, most commercial vehicles adopt pneumatic brake system. However, pneumatic brake systems control is more difficult than hydraulic systems due to a longer time delay and the system nonlinearity. One of the major factors in generating braking forces is the wheel slip ratio. Accordingly, the proposed ABS strategy employs the slip ratio threshold-based valve on/off control. This threshold-based algorithm is simple but effective to control the pneumatic brake systems. The control performance of the proposed algorithm has been validated via simulation studies using MATLAB/Simulink and Trucksim. The results show ABS by using slip ratio reduces the braking distance and improves vehicle control.

ABS 모듈의 접속부 및 전원배선 손상으로 인한 차량화재 사고사례 분석 (Analysis on the Fire Accident of Vehicle Due to Damage of Connector and wiring on an Anti-lock Brake System(ABS) Module)

  • 박남규;김진표;남정우;박종택;송재용
    • 한국안전학회지
    • /
    • 제32권5호
    • /
    • pp.13-19
    • /
    • 2017
  • In this paper, study of vehicle fire cases caused by connector and power wiring of anti-lock brake system(ABS) module damage is presented. The purpose of ABS module is to improve braking and steering ability under sudden stop of the vehicle by repeatedly activating and releasing the brake with electric signal via electric control unit. The electric control unit for ABS may experience incomplete contact between power line and signal line or electrical breakdown on the printed circuit board by undergoing repetitive signal change which would consequently result in electrical heat and spark, eventually leading to automotive fire. Therefore, the purpose of this paper is to provide fundamental data by analyzing connector and power wiring of ABS module damage conducive to the precise investigation on the cause of vehicle fire.

Anti-Look Brake Systern을 위한 경험적 노면판단 방법 (An Empirical Approach to determine Road-Surface Conditions for Anti-Lock Brake System)

  • 박병량;양순용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.125-125
    • /
    • 2000
  • An Empirical approach to determine a road-surface condition is presented The road-surface condition thus provided includes the detection of not only friction coefficient, but also abrupt surface-profile changes such as pitfalls and bumpers The former plays a key role in establishing the appropriate control strategy, while the latter allows to minimize unnecessary brake intervention induced by the aforementioned jut. In this paper, we use an empirically chosen variable, namely. the time-rate of change of vehicle speed estimated from the point where ABS engaged to the point where measurement taken Experimental results shoe that the proposed method is effective to infer various control variables critical for the control of ABS.

  • PDF

ER 밸브를 이용한 자동차 브레이크 시스템의 차륜 슬립제어 (Wheel slip control of automotive brake system using ER valve)

  • 방주현;최승복
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.357-360
    • /
    • 1997
  • This paper presents a new anti-lock brake system(ABS) using electro-rheological(ER) valve actuators for the wheel slip control. The hydraulic dynamic model of the automotive brake system is formulated by incorporating electric field-dependent Bingham properties of ER fluid obtained experimentally. The brake system designed by this hydraulic model is able to control wheel slip by controlling the intensity of electric field which tunes the braking torque. The control fields of the ER valve to command desired wheel slip are determined by a sliding mode controller. A comparison between the proposed brake system and the conventional brake system is made by providing with computer simulations of vehicle motions under ABS performance requirement condition.

  • PDF

차량 비상제동을 위한 전자식 주차 브레이크 제어 시뮬레이터 설계 (Design of Electronic Parking Brake Control Simulator for Emergency Vehicle Braking)

  • 박재은;임창현;김태성;김영근
    • 한국자동차공학회논문집
    • /
    • 제25권1호
    • /
    • pp.19-27
    • /
    • 2017
  • In this paper, a simulator hardware and control design for an electronic parking brake (EPB) are proposed for emergency vehicle braking when the hydraulic break and anti-lock brake systems (ABS) fail to function. EPB systems are designed specifically for park braking and are usually installed on the rear wheels. However, in an emergency situation when all vehicle brake systems fail, the EPB can be utilized to stop the vehicle and track the target slip ratio as the ABS. This paper analyzed the non-linear EBP of the type of motor on caliper (MoC) based on experiments. A simulator hardware is also designed to validate the performance of the designed EPB controller in terms of braking distance and performance in tracking the target slip ratio. Through the experimental analysis, it is confirmed that a sliding mode controller can be applied on a non-linear EPB to track the target slip ratio.

승용차 ABS의 하이드로릭 유닛, 센서, 컴퓨터에 관련된 트라이볼로지적인 고장사례 고찰 (Tribological Failure Examples Involving Hydraulic Unit, Sensor, Computer of Anti-lock Brake System in Passenger Cars)

  • 이일권;한재오;이정호;이영숙;김추하
    • Tribology and Lubricants
    • /
    • 제30권3호
    • /
    • pp.183-188
    • /
    • 2014
  • In this paper, we present our analysis of tribological failure examples for an anti-lock brake system(ABS) in a car. The study range of this paper is to improve the quality of ABS system by analyzing with sensor, computer, actuator and oil lines. In the first example, the brake leak from hydraulic supply line in a caliper on the rear left side of the ABS hydraulic modulator. This produces the sponge phenomenon, where the car does not brake even when the driver operates the brake pedal. The hydraulic unit operating ABS is actuator that play role regulating drive condition according with the oil pressure supplied with wheel of a car. In the second example, the service man does not completely tighten the fixed bolt after repairing the car. This causes the ABS warning lamp to light up as the ABS wheel speed sensor cannot detect whether the ABS has been activated. In the third example, the ABS electronic control unit is separated from the soldered part of the inner circuit board. Consequently, the ABS fails in control because the ABS motor pump receives no-signal for the hydraulic unit. The wheel speed sensor has to large durability because of giving signal of acting condition to computer by detected the acceleration and deceleration of wheel of a car. In the fourth example, the ABS warning lamp lights up of when cracks propagate in the circuit board soldering part. The circuit of this computer is very important part for input and output the operating signal of system. Such failures can aggravate the durability of the ABS. Thus, the ABS needs to be optimized to eliminate malfunction phenomenon.