• Title/Summary/Keyword: ABREs

Search Result 2, Processing Time 0.015 seconds

The Arabidopsis Phytocystatin AtCYS5 Enhances Seed Germination and Seedling Growth under Heat Stress Conditions

  • Song, Chieun;Kim, Taeyoon;Chung, Woo Sik;Lim, Chae Oh
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.577-586
    • /
    • 2017
  • Phytocystatins (PhyCYSs) are plant-specific proteinaceous inhibitors that are implicated in protein turnover and stress responses. Here, we characterized a PhyCYS from Arabidopsis thaliana, which was designated AtCYS5. RT-qPCR analysis showed that the expression of AtCYS5 in germinating seeds was induced by heat stress (HS) and exogenous abscisic acid (ABA) treatment. Analysis of the expression of the ${\beta}-glucuronidase$ reporter gene under the control of the AtCYS5 promoter showed that AtCYS5 expression during seed germination was induced by HS and ABA. Constitutive overexpression of AtCYS5 driven by the cauliflower mosaic virus 35S promoter led to enhanced HS tolerance in transgenic Arabidopsis, which was characterized by higher fresh weight and root length compared to wild-type (WT) and knockout (cys5) plants grown under HS conditions. The HS tolerance of AtCYS5-overexpressing transgenic plants was associated with increased insensitivity to exogenous ABA during both seed germination and post-germination compared to WT and cys5. Although no HS elements were identified in the 5'-flanking region of AtCYS5, canonical ABA-responsive elements (ABREs) were detected. AtCYS5 was upregulated in ABAtreated protoplasts transiently co-expressing this gene and genes encoding bZIP ABRE-binding factors (ABFs and AREB3). In the absence of ABA, ABF1 and ABF3 directly bound to the ABREs in the AtCYS5 promoter, which activated the transcription of this gene in the presence of ABA. These results suggest that an ABA-dependent pathway plays a positive role in the HS-responsive expression of AtCYS5 during seed germination and post-germination growth.

Studies on OsABF3 Gene Isolation and ABA Signal Transduction in Rice Plants Against Abiotic Stress (비 생물학적 스트레스 시 벼에서 OsABF3 유전자 분리와 ABA 신호전달 대한 연구)

  • Ahn, Chul-Hyun;Park, Phun-Bum
    • Korean Journal of Plant Resources
    • /
    • v.30 no.5
    • /
    • pp.571-577
    • /
    • 2017
  • Abscisic acid (ABA) is an important phytohormone involved in abiotic stress tolerance in plants. The group A bZIP transcription factors play important roles in the ABA signaling pathway in Arabidopsis but little is known about their functions in rice. In our current study, we have isolated and characterized a group A bZIP transcription factor in rice, OsABF3 (Oryza sativa ABA responsive element binding factor 3). We examined the expression patterns of OsABF3 in various tissues and time course analysis after abiotic stress treatments such as drought, salinity, cold, oxidative stress, and ABA in rice. Subcellular localization analysis in maize protoplasts using a GFP fusion vector further indicated that OsABF3 is a nuclear protein. Moreover, in a yeast one-hybrid experiment, OsABF3 was shown to bind to ABA responsive elements (ABREs) and its N-terminal region found to be necessary to transactivate a downstream reporter. A homozygous T-DNA insertional mutant of OsABF3 is more sensitive to salinity, drought, and oxidative stress compared with wild type plants & OsABF3OX plants. In addition, this Osabf3 mutant showed a significantly decreased sensitivity to high levels of ABA at germination and post-germination. Collectively, our present results indicate that OsABF3 functions as a transcriptional regulator that modulates the expression of abiotic stress-responsive genes through an ABA-dependent pathway.