• Title/Summary/Keyword: ABAQUS Program

Search Result 339, Processing Time 0.023 seconds

Performance Analysis of Automobile Type Air Conditioner Tube Connector (자동차용 에어컨 튜브 커넥터의 성능 해석)

  • Jang, Sung-Cheol;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.52-58
    • /
    • 2007
  • This study shows a numerical method to predict automobile type air conditioner tube connector in the forming process. The simulation approach with 3-D FEM program(ABAQUS) for forming process, forming process simulation is in good agrement with it in tendency. Finally, we compared the forming result with simulation. The result of research showed thai forming process technology is promising to produce automobile type air conditioner tube connector.

  • PDF

Press forming severity analysis and selection of optimum sheet steel properties for customer lines by using 3-D simulation program. (삼차원 프레스가공 시뮬레이션 기술을 활용한 수요가 가공공정 분석과 최적 재질선정)

  • 박기철;한수식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.06a
    • /
    • pp.111-131
    • /
    • 1996
  • In order to analyze stamping processes and to select optimum material properties of sheet steels for customer lines, 3-dimensional finite element analysis software were used. Commercial explicit finite element code, PAM-STAMP, was able to simulate 3-dimensional press formed parts with good accuracy and gave some useful results by orthogonal array experiments. Deformation of draw-bead were predicted by ABAQUS accurately, so that material selection for those parts by simulation were possible.

Nonlinear Analysis of Concrete Using K & C Model (K &C 모델을 이용한 콘크리트 비선형 해석)

  • 김영진;김장호;조병완
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.409-414
    • /
    • 2003
  • This paper develops a relatively comprehensive and sophisticated constitutive model of concrete for finite element analysis of concrete structures. The present model accounts for the hydrostatic pressure sensitivity and Lode angle dependence behavior of concrete, not only in its strength criterion, but also in its hardening characteristics. The implementation is carried out through incorporating the developed concrete model in User Subroutine Material(UMAT) of the general-purpose FE program ABAQUS(v.5.8). It is found that the model can sufficiently predict the hardening as well as the softening behaviour of concrete under high confining pressure.

  • PDF

Thermomechanical Behaviors of Shape Memory Alloy Thin Films and Their Application

  • Roh, Jin-Ho;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.91-98
    • /
    • 2006
  • The thermomechanical behaviors of SMA thin film actuator and their application are investigated. The numerical algorithm of the 2-D SMA thermomechanical constitutive equation is developed and implemented into the ABAQUS finite element program by using the user defined material (UMAT) subroutine. To verify the numerical algorithm of SMAs, the results are compared with experimental data. For the application of SMA thin film actuator, the methodology to maintain the precise configuration of inflatable membrane structure is demonstrated.

Model for High Temperature Densification (알루미나 분말 성형체의 고온 치밀화 성형 공정 해석을 위한 모델)

  • 권영삼;김기태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.159-166
    • /
    • 1994
  • A constitutive model was proposed to analyze creep densification and grain growth of alumina powder compacts during high temperature processing. Theoretical results from the constitutive model were compared with various experimental data of alumina powder compacts in the literature including pressureless sintering, sinter forging and hot pressing. The proposed constitutive equations were implemented into finite element analysis program (ABAQUS) to simulate densification for more complicated geometry and loading conditions. High temperature forming processing of alumina compact with complicated shape was simulated. Processing of Alumina Powder Compacts

  • PDF

A Study on the Expansive Deformation of Rifle Barrel and Gun Barrel (총열 및 포신의 팽창 변형에 관한 연구)

  • 김동욱;이재영;강영철
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.7-14
    • /
    • 2000
  • In this paper, the possibility of plastic deformation of rifle and gun barrels is studied through the numerical methods. When a rifle or tank gun is fired, the expansive deformation of the barrel can occur by the explosive pressure and the thermal effect. Using the ABAQUS program, the stresses and displacements are computed for the elastic and elastic-plastic material property, and the possibility of plasticity deformation is investigated. In conclusion, rifle and tank gun barrel the plastic deformation occurred in some parts of the barrel

  • PDF

Flaw Analysis Based Life Assessment of Welded Tubular Joint (결함해석에 기초한 배관용접부 수명평가)

  • Lee, Hyeong-Il;Han, Tae-Su;Jeong, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1331-1342
    • /
    • 2000
  • In power generation systems a variety of structural components typically operate at high temperature and pressure. Therefore a life assessment methodology accounting for gradual creep fracture is increasingly needed for these components. The most critical defects in such structure are generally found in the form of semi-elliptical surface cracks in the welded tubular joints. Therefore the analysis of a semi-elliptical surface crack in a plate or a shell is an important problem in engineering fracture mechanics. On this background, via shell/line-spring finite element analyses of such surface cracks in the welded T and L joints under various loadings, we investigate J-integral along the crack front We first develop T and L joints auto mesh generation program providing ABAQUS input file composed of shell/line-spring finite elements. We then further develop a T and L joints life assessment program based on the experimental creep crack growth law and auto mesh generation program in a graphical user interface format Finally the remaining life of T and L joints for various analytical parameters are assessed using the developed life assessment program.

Geomechanical and thermal reservoir simulation during steam flooding

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.505-513
    • /
    • 2018
  • Steam flooding is widely used in heavy oil reservoir with coupling effects among the formation temperature change, fluid flow and solid deformation. The effective stress, porosity and permeability in this process can be affected by the multi-physical coupling of thermal, hydraulic and mechanical processes (THM), resulting in a complex interaction of geomechanical effects and multiphase flow in the porous media. Quantification of the state of deformation and stress in the reservoir is therefore essential for the correct prediction of reservoir efficiency and productivity. This paper presents a coupled fluid flow, thermal and geomechanical model employing a program (MATLAB interface code), which was developed to couple conventional reservoir (ECLIPSE) and geomechanical (ABAQUS) simulators for coupled THM processes in multiphase reservoir modeling. In each simulation cycle, time dependent reservoir pressure and temperature fields obtained from three dimensional compositional reservoir models were transferred into finite element reservoir geomechanical models in ABAQUS as multi-phase flow in deforming reservoirs cannot be performed within ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, the proposed approach is illustrated on a complex coupled problem related to steam flooding in an oil reservoir. The reservoir coupled study showed that permeability and porosity increase during the injection scenario and increasing rate around injection wells exceed those of other similar comparable cases. Also, during injection, the uplift occurred very fast just above the injection wells resulting in plastic deformation.

Geometric and Material Nonlinear Analysis of Single Layer Dome using ABAQUS (유한요소 해석을 이용한 단층 래티스 돔의 비선형비탄성 해석)

  • Kim, Yeon-Tae;Jeong, Mi-Roo;Lee, Jae-Hong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.119-124
    • /
    • 2008
  • Space structure is a appropriate shape that resists external force only with in-plane force by reducing the influence of bending moment, and it maximizes the effectiveness of structure system. The space structure should be analized by nonlinear analysis regardless static and dynamic analysis because it accompanies large deflection for member. To analyze the structure of the space structure exactly generally geometrically nonlinear and material nonlinear, complex nonlinear analysis are considered. To settle the weakness that geometric nonlinear problem does not consider nonlinear as per trait and position of the structure material and that the nonlinear matter of structure material also does not consider nonlinear as per geometric form. Therefore, In this paper, analysis is considered geometric nonlinear and material nonlinear simultaneous conditioning, and traced load-deflection curve by using ABAQUS which is the general purpose of the finite element program.

  • PDF

Behavior of Geotextile Tube by Plane Strain Analysis and 3-Dimensional Finite Element Method (평면변형해석과 3-D FEM 기법을 통한 지오텍스타일 튜브의 거동해석)

  • 신은철;오영인
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.233-241
    • /
    • 2003
  • Geotextile tube is hydraulically filled with dredged materials and has been applied to coastal protection and scour protection, dewatering method of slurry, and isolation of contaminated material. Recently, geotextile tube technology is no longer alternative construction technique but suitable desired solution. In this paper, the numerical analysis was performed to investigate the behavior of geotextile tube with various properties of geotextile sheet and hydraulic pumping conditions. Numerical analysis was executed to compare with the results from the large-scale field model tests, and also with those of plane strain analysis and 3-D FEM analysis. A geotextile tube was modeled using the commercial finite element analysis program ABAQUS and the one-quarter of tube was modeled. Behavior of geotextile tube during the hydraulic pumping procedure was analyzed by comparing the large-scale field model test and numerical analysis. The shape variation and maximum tube height between the numerical analysis results and large-scale filed test results are turned out to be in a good agreement.