• Title/Summary/Keyword: ABAQUS/Explicit

Search Result 109, Processing Time 0.021 seconds

Comparative study on deformation and mechanical behavior of corroded pipe: Part I-Numerical simulation and experimental investigation under impact load

  • Ryu, Dong-Man;Wang, Lei;Kim, Seul-Kee;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.509-524
    • /
    • 2017
  • Experiments and a numerical simulation were conducted to investigate the deformation and impact behavior of a corroded pipe, as corrosion, fatigue, and collision phenomena frequently occur in subsea pipelines. This study focuses on the deformation of the corrosion region and the variation of the geometry of the pipe under impact loading. The experiments for the impact behavior of the corroded pipe were performed using an impact test apparatus to validate the results of the simulation. In addition, during the simulation, material tests were performed, and the results were applied to the simulation. The ABAQUS explicit finite element analysis program was used to perform numerical simulations for the parametric study, as well as experiment scenarios, to investigate the effects of defects under impact loading. In addition, the modified ASME B31.8 code formula was proposed to define the damage range for the dented pipe.

Impact Behavior of Laminated Composite using Progressive Failure Model (단계적 파괴 모델에 의한 적층 복합재료의 충격거동 해석)

  • 강문수;이경우;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.102-105
    • /
    • 2000
  • Recently, applications of integrated large composite structures have been attempted to many structures of vehicles. To improve the cost performance and reliability of the integrated composite structures, it is necessary to judge structural integrity of the composite structures. For the judgement, we need fracture simulation techniques for composite structures. Many researches oil the fracture simulation method using FEM have been reported by now. Most of the researches carried out simulations considering only matrix cracking and fiber breaking as fracture modes, and did not consider delamination. Several papers have reported the delamination simulation, but all these reports require three-dimensional elements or quasi three- dimensional elements for FEM analysis. Among fracture mechanisms of composite laminates, delamination is the most important factor because it causes stiffness degradation in composite structures. It is known that onset and propagation of delamination are dominated by the strain energy release rate and interfacial moment. In this study, laminated composite has been described by using 3 dimensional finite elements. Then impact behavior of the laminated composite is simulated using FEM(ABAQUS/Explicit) with progressive failure mechanism. These results are compared with experimental results.

  • PDF

Crash analysis of military aircraft on nuclear containment

  • Sadique, M.R.;Iqbal, M.A.;Bhargava, P.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.73-87
    • /
    • 2015
  • In case of aircraft impact on nuclear containment structures, the initial kinetic energy of the aircraft is transferred and absorbed by the outer containment, may causing either complete or partial failure of containment structure. In the present study safety analysis of BWR Mark III type containment has been performed. The total height of containment is 67 m. It has a circular wall with monolithic dome of 21m diameter. Crash analysis has been performed for fighter jet Phantom F4. A normal hit at the crown of containment dome has been considered. Numerical simulations have been carried out using finite element code ABAQUS/Explicit. Concrete Damage Plasticity model have been incorporated to simulate the behaviour of concrete at high strain rate, while Johnson-Cook elasto-visco model of ductile metals have been used for steel reinforcement. Maximum deformation in the containment building has reported as 33.35 mm against crash of Phantom F4. Deformations in concrete and reinforcements have been localised to the impact region. Moreover, no significant global damage has been observed in structure. It may be concluded from the present study that at higher velocity of aircraft perforation of the structure may happen.

Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load

  • Baaskaran, N.;Ponappa, K.;Shankar, S.
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.179-194
    • /
    • 2018
  • Reliable and accurate method of computationally aided design processes of advanced thin walled structures in automotive industries are much essential for the efficient usage of smart materials, that possess higher energy absorption in dynamic compression loading. In this paper, most versatile components i.e., thin walled crash tubes with different geometrical profiles are introduced in view of mitigating the impact of varying cross section in crash behavior and energy absorption characteristics. Apart from the geometrical parameters such as length, diameter and thickness, the non-dimensionalized parameters of average forces which control the plastic bending moment for varying thickness has explored in view of quantifying its impact on the crashworthiness of the structure. The explicit finite element code ABAQUS is utilized to conduct the numerical studies to examine the effect of parametric modifications in crash behavior and energy absorption. Also the simulation results are experimentally validated. It is evident that the circular cross-sectional tubes are preferable as high collision impact shock absorbers due to their ability in withstanding axial and oblique impact loads effectively. Furthermore, the specific energy absorption (SEA), crash force efficiency (CFE), plastic bending moment, peak force responses and its impact for optimally tailoring a design to cater the crashworthiness requirements are investigated. The primary outcome of the study is to provide sufficient information on circular tubes for the use of energy absorbers where impact oblique loading is expected.

Braking Distance Estimation using Frictional Energy Rate (마찰에너지율을 이용한 타이어 제동거리 예측)

  • Jeon, Do-Hyung;Choi, Joo-Hyung;Cho, Jin-Rae;Kim, Gi-Jeon;Woo, Jong-Shik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.519-524
    • /
    • 2004
  • This study is concerned with the braking distance estimation using frictional energy rate. First, steady state rolling analysis is performed, and using this result, the braking distance is estimated. Dynamic rolling analysis during entire braking time period is impratical, so that this study divides the vehicle velocity by 10km/h to reduce the analysis time. The multiplication of the slip rate and the shear stress provides the frictional energy rate. Using frictional energy rate, total braking distance is estimated, In addition, ABS(Anti-lock Brake System) is considered, and two type of slip ratios are compared, One is 15% slip ratio for the ABS condition, and the other is 100% slip ratio which leads lo the almost same braking distance as the elementary kinematic theory. A slip ratio is controlled by angular velocity in ABAQUS/Explicit, A 15% slip ratio gives the real vehicle's braking distance when the frictional energy occurred al disk pad is included. Disk pad's frictional energy rate is calculated by the theoretical approach.

  • PDF

FE Analysis for hydro-mechanical Hole Punching Process (Hydro-mechanical hole punching 공정의 유한요소 해석)

  • Yoon J. H.;Kim S. S.;Park H. J.;Choi T. H.;Lee H. J.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.159-162
    • /
    • 2005
  • The milli-components for electronic and medical device etc. have been manufactured by conventional process. Forming and machining process for those milli-components need tremendous cost and time because products require higher dimensional accuracy than the conventional ones. For instance, conventional mechanical punching process has many drawbacks for applying to high accuracy products. The final radius of hole can be varied and burr which interrupting another procedure is generated. Hydro-mechanical punching process makes possible to reduce amount of burr and obtain the fine shearing surface using the operating fluid. Hydrostatic pressure retards occurrence of initial crack and induces to locate the fracture surface in the middle of sheet to thickness direction. In this paper, Hydro-mechanical punching process is analyzed using finite element method and the effect of hydrostatic pressure is evaluated during punching process. The prediction of fracture is performed adopting the various ductile fracture criteria such as Cockcroft, Brozzo and Oyane's criterion using a user subroutine in ABAQUS explicit.

  • PDF

Analysis of various composite patches effect on mechanical properties of notched Al-Mg plate

  • Meran, Ahmad P.;Samanci, Ahmet
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.685-692
    • /
    • 2017
  • In this study, the effect of various adhesively bonded composite patches on mechanical properties of notched Al-Mg alloy plates was analyzed. For this purpose firstly, the un-notched and notched specimens were fabricated from 5086 Al-Mg alloys which have been used in armor-plated military vehicles. The surface notches as a flaw were machined with circular cutting tool to form notch aspect ratio a/c=0.15 and notch-to-thickness ratios a/t=0.5 in the radial direction on the test specimens. Then, various composite patches which reinforced by glass, carbon and Kevlar fibers were bonded adhesively at elliptically surface notches. Finally, experimental measurements conducted by applying tensile static loading. The experimental results showed that repairing with composite patches with order of carbon, glass and Kevlar fibers have remarkable effect on tensile strength of the notched plate. Also the finite element models were developed using Abaqus/Explicit code to predict the tensile strength and elongation of unrepaired notched specimen and specimen repaired by carbon fiber composite patch. The comparison between numerical and experimental results showed good agreement between them and proved the accuracy of numerical modeling.

FEM investigation of SFRCs using a substepping integration of constitutive equations

  • Golpasand, Gholamreza B.;Farzam, Masood;Shishvan, Siamak S.
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.181-192
    • /
    • 2020
  • Nowadays, steel fiber reinforced concretes (SFRCs) are widely used in practical applications. Significant experimental research has thus been carried out to determine the constitutive equations that represent the behavior of SFRCs under multiaxial loadings. However, numerical modelling of SFRCs via FEM has been challenging due to the complexities of the implementation of these constitutive equations. In this study, following the literature, a plasticity model is constructed for the behavior of SFRCs that involves the Willam-Warnke failure surface with the relevant evolution laws and a non-associated flow rule for determining the plastic deformations. For the precise (yet rapid) integration of the constitutive equations, an explicit substepping scheme consisting of yield intersection and drift correction algorithms is employed and thus implemented in ABAQUS via UMAT. The FEM model includes various material parameters that are determined from the experimental data. Three sets of parameters are used in the numerical simulations. While the first set is from the experiments that are conducted in this study on SFRC specimens with various contents of steel fibers, the other two sets are from the experiments reported in the literature. The response of SFRCs under multiaxial compression obtained from various numerical simulations are compared with the experimental data. The good agreement between numerical results and the experimental data indicates that not only the adopted plasticity model represents the behavior of SFRCs very well but also the implemented integration scheme can be employed in practical applications of SFRCs.

Numerical Analysis of Iceberg Impact Interaction with Ship Stiffened Plates Considering Low-temperature Characteristics of Steel (강재의 저온 특성을 고려한 선체 보강판과 빙하의 충격 상호 작용에 대한 수치 해석)

  • Nam, Woongshik
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.411-420
    • /
    • 2019
  • It is essential to design crashworthy marine structures for operations in Arctic regions, especially ice-covered waters, where the structures must have sufficient capacity to resist iceberg impact. In this study, a numerical analysis of a colliding accident between an iceberg and stiffened plates was carried out employing the commercial finite element code ABAQUS/Explicit. The ice material model developed by Liu et al. (2011) was implemented in the simulations, and its availability was verified by performing some numerical simulations. The influence of the ambient temperature on the structural resistance was evaluated while the local stress, plastic strain, and strain energy density in the structure members were addressed. The present study revealed the risk of fracture in terms of steel embrittlement induced by ambient temperature. As a result, the need to consider the possibility of brittle failure in a plate-stiffener junction during operations in Arctic regions is acknowledged. Further experimental work to understand the structural behavior in a plate-stiffener junction and HAZ is required.

Safety Analysis through Small Car Crash Simulation of Bollard with Square Rounding Sidewalk Block Frame (사각 라운딩 보도틀이 시공된 자동차진입 억제용 말뚝의 소형 승용차량 충돌 시뮬레이션을 통한 안전성 분석)

  • Park, Ji-Young;Ryu, Dong-Hwan;You, Eon-Zung;Kim, Seong-Kyum
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.407-415
    • /
    • 2022
  • In this study, a square rounding sidewalk block frame was developed considering the simplicity of construction and the superiority of aesthetics. In addition, it is possible to prevent damage, deformation, and settlement of adjacent sidewalk blocks due to plastic deformation during car impact load of installed bollad. A non-linear structural analysis was performed through finite element analysis to examine the performance of a car crash to which this was applied. Structural safety was confirmed through car crash simulation according to the direction of impact, and it is estimated that the function can be restored by replacing some parts in case of damage due to impact.