• 제목/요약/키워드: AA6061-T6

검색결과 13건 처리시간 0.021초

냉간압연접합법에 의해 제조된 AA6061/AA5052/AA6061 복합판재의 미세조직 및 기계적 성질 (Microstructure and Mechanical Properties of AA6061/AA5052/AA6061 Complex Sheet Fabricated by Cold-Roll Bonding Process)

  • 황주연;이성희
    • 한국재료학회지
    • /
    • 제29권6호
    • /
    • pp.392-397
    • /
    • 2019
  • A cold roll-bonding process is applied to fabricate an AA6061/AA5052/AA6061 three-layer clad sheet. Two AA6061 and one AA5052 sheets of 2 mm thickness, 40 mm width, and 300 mm length are stacked, with the AA5052 sheet located in the center. After surface treatment such as degreasing and wire brushing, sample is reduced to a thickness of 1.5 mm by multi-pass cold rolling. The rolling is performed at ambient temperature without lubricant using a 2-high mill with a roll diameter of 400 mm at rolling speed of 6.0 m/sec. The roll bonded AA6061/AA5052/AA6061 complex sheet is then hardened by natural aging(T4) and artificial aging(T6) treatments. The microstructures of the as-roll bonded and age-hardened Al complex sheets are revealed by optical microscopy; the mechanical properties are investigated by tensile testing and hardness testing. After rolling, the roll-bonded AA6061/AA5052/AA6061 sheets show a typical deformation structure in which grains are elongated in the rolling direction. However, after T4 and T6 aging treatment, there is a recrystallization structure consisting of coarse equiaxed grains in both AA5052 and AA6061 sheets. The as roll-bonded specimen shows a sandwich structure in which an AA5052 sheet is inserted into two AA6061 sheets with higher hardness. However, after T4 and T6 aging treatment, there is a different sandwich structure in which the hardness of the upper and lower layers of the AA6061 sheets is higher than that of the center of the AA5052 sheet. The strength values of the T4 and T6 age-treated specimens are found to increase by 1.3 and 1.4 times, respectively, compared to that value of the starting material.

냉간압연접합된 층상 AA6061/AA5052/AA6061/AA5052 알루미늄합금판재의 미세조직 및 기계적 성질 (Microstructure and Mechanical Properties of Cold Roll-Bonded Layered AA6061/AA5052/AA6061/AA5052 Aluminum Alloy Sheet)

  • 조상현;박보배;이성희
    • 한국재료학회지
    • /
    • 제32권3호
    • /
    • pp.161-167
    • /
    • 2022
  • A cold roll-bonding process is applied to fabricate an AA6061/AA5052/AA6061/AA5052 layered sheet. Two AA6061 and one AA5052 sheets of 2mm thickness, 40mm width and 300mm length are alternately stacked, then reduced to a thickness of 2.0 mm by multi-pass cold rolling after surface treatment such as degreasing and wire brushing. The rolling is performed at ambient temperature without lubricant using a 2-high mill with a roll diameter of 400 mm at a rolling speed of 6.0 m/sec. The roll-bonded AA6061/AA5052/AA6061/AA5052 layered sheet is then hardened by natural aging (T4) and artificial aging (T6) treatments. The microstructure of the as-roll bonded and the age-hardened Al sheets was revealed by SEM observation; the mechanical properties were investigated by tensile testing and hardness testing. After T4 and T6 aging treatment, the specimens had a recrystallization structure consisting of coarse equiaxed grains in both AA5052 and AA6061 regions. The as-roll-bonded specimen showed a clad structure in which the hardness of AA5052 regions was higher than that of AA6061 regions. However, after T4 and T6 aging treatment, specimens exhibited different structures, with hardness of AA6061 regions higher than that of AA5052 regions. Strengths of T6 and T4 age-treated specimens were found to increase by 1.55 and 1.36 times, respectively, compared to the value of the starting material.

냉간접합압연 후 시효처리된 AA1050/AA6061/AA1050 층상판재의 미세조직 및 기계적 성질 (Microstructure and Mechanical Properties of AA1050/AA6061/AA1050 Layered Sheet Aging-Treated after Cold Roll-Bonding)

  • 조상현;이성희
    • 한국재료학회지
    • /
    • 제33권12호
    • /
    • pp.565-571
    • /
    • 2023
  • AA1050/AA6061/AA1050 layered sheet was fabricated by cold roll-bonding process and subsequently T4 and T6 aging-treated. Two commercial AA1050 sheets of 1 mm thickness and one AA6061 sheet of 2 mm thickness were stacked up so that an AA6061 sheet was located between two AA1050 sheets. After surface treatments such as degreasing and wire brushing, they were then roll-bonded to a thickness of 2 mm by cold rolling. The roll-bonded Al sheets were then processed by natural aging (T4) and artificial aging (T6) treatments. The as roll-bonded Al sheets showed a typical deformation structure, where the grains are elongated in the rolling direction. However, after the T4 and T6 aging treatments, the Al sheets had a recrystallized structure consisting of coarse grains in both the AA5052 and AA6061 regions with different grain sizes in each. In addition, the sheets showed an inhomogeneous hardness distribution in the thickness direction, with higher hardness in AA6061 than in AA1050 after the T4 and T6 age treatments. The tensile strength of the T6-treated specimen was higher than that of the T4-treated one. However, the strength-ductility balance was much better in the T4-treated specimen than the T6-treated one. The tensile properties of the Al sheets fabricated in the present study were compared with those in a previous study.

냉간압연접합법에 의해 제조된 AA1050/AA6061/AA1050 층상 복합판재의 미세조직 및 기계적 성질 (Microstructure and Mechanical Properties of AA1050/AA6061/AA1050 Complex Sheet Fabricated by Roll Bonding Process)

  • 안무종;유효상;이성희
    • 한국재료학회지
    • /
    • 제26권7호
    • /
    • pp.388-392
    • /
    • 2016
  • A cold roll-bonding process was applied to fabricate an AA1050/AA6061/AA1050 laminate complex sheet. Two AA1050 and one AA6061 sheets of 2 mm thickness, 40 mm width and 300 mm length were stacked up after surface treatment that included degreasing and wire brushing; material was then reduced to a thickness of 3 mm by one-pass cold rolling. The laminate sheet bonded by the rolling was further reduced to 1.2 mm in thickness by conventional rolling. The rolling was performed at ambient temperature without lubricant using a 2-high mill with a roll diameter of 210 mm. The rolling speed was 5.0 m/sec. The AA1050/AA6061/AA1050 laminate complex sheet fabricated by roll bonding was then hardened by natural aging T4) and artificial aging (T6) treatments. The microstructures of the as-roll bonded and the age hardened Al complex sheets were revealed by optical microscope observation; the mechanical properties were investigated by tensile testing and hardness testing. The strength of the as-roll bonded complex sheet was found to increase by 2.9 times compared to that value of the starting material. In addition, the hardness of the complex sheets increased with cold rolling for AA1050 and age-hardening treatment for AA6061, respectively. After heat treatment, both AA1050 and AA6061 showed typical recrystallization structures in which the grains were equiaxed; however, the grain size was smaller in AA6061 than in AA1050.

해양환경용 알루미늄 합금 재료의 전기화학적 부식 손상 특성 (Electrochemical Corrosion Damage Characteristics of Aluminum Alloy Materials for Marine Environment)

  • 김성진;황은혜;박일초;김성종
    • 한국표면공학회지
    • /
    • 제51권6호
    • /
    • pp.421-429
    • /
    • 2018
  • In this study, various electrochemical experiments were carried out to compare the corrosion characteristics of AA5052-O, AA5083-H321 and AA6061-T6 in seawater. The electrochemical impedance and potentiostatic polarization measurements showed that the corrosion resistance is decreased in the order of AA5052-O, AA5083-H321 and AA6061-T6, with AA5052-O being the highest resistant. This is closely associated with the property of passive film formed on three tested Al alloys. Based on the slope of Mott-Schottky plots of an n-type semiconductor, the density of oxygen vacancies in the passive film formed on the alloys was determined. This revealed that the defect density is increased in the order of AA5052-O, AA5083-H321 and AA6061-T6. Considering these facts, it is implied that the addition of Mg, Si, and Cu to the Al alloys can degrade the passivity, which is characterized by a passive film structure containing more defect sites, contributing to the decrease in corrosion resistance in seawater.

Residual stresses measurement in the butt joint welded metals using FSW and TIG methods

  • Taheri-Behrooz, Fathollah;Aliha, Mohammad R.M.;Maroofi, Mahmood;Hadizadeh, Vahid
    • Steel and Composite Structures
    • /
    • 제28권6호
    • /
    • pp.759-766
    • /
    • 2018
  • Friction Stir Welding (FSW) is a solid-state process, where the objects are joined together without reaching their melting point. It has been shown that this method is a suitable way to join dissimilar aluminium alloys. The current article employed hole drilling technique to measure the residual stress distribution experimentally in different zones of dissimilar aluminium alloys AA6061-T6 and AA7075-T6 Butt welded using FSW. Results are compared with those of similar AA6061-T6 plates joined using a conventional fusion welding method called tungsten inert gas (TIG). Also, the evolution of the residual stresses in the thickness direction was investigated, and it was found that the maximum residual stresses are below the yield strength of the material in the shoulder region. It was also revealed that the longitudinal residual stresses in the joint were much larger than the transverse residual stresses. Meanwhile, Vickers micro hardness measurements were performed in the cross-section of the samples. The largest hardness values were observed in the stir zone (SZ) adjacent to the advancing side whereas low hardness values were measured at the HAZ of both alloys and the SZ adjacent to the retreating side.

6.75L급 소형 AA6061 라이너의 후방압출 및 노우징 공정에 관한 해석적 연구 (Numerical Evaluation of Backward Extrusion and Head Nosing for Producing a 6.75L Small Seamless AA6061 Liner)

  • 구태완;강범수
    • 소성∙가공
    • /
    • 제22권4호
    • /
    • pp.204-215
    • /
    • 2013
  • As a pressure vessel, a small seamless aluminum liner with inner volume of about 6.75L is made from an initial billet material of AA6061-O. To produce the aluminum liner, warm forging including backward extrusion and head nosing was numerically simulated using a billet initially pre-heated to about $480^{\circ}C$. Compression tests on the billet material were performed at various temperatures and strain rates, and the measured mechanical properties were used in the numerical simulations. For the backward extrusion and the head nosing, the tool geometries were designed based on the desired configuration of the aluminum liner. Furthermore, the structural integrity of the tooling was evaluated to ensure adequate tool life. The seamless aluminum liner has an endurance limit of about 1.47MPa ($15Kg_f/cm^2$), estimated based on the required inner pressure. The results confirm that the small seamless aluminum liner of AA6061-O can be successfully made by using the two stage warm forging procedures without any bursting failures.

AA6061 판재의 핫 포밍 퀜칭 공정에서 성형온도가 스프링백에 미치는 영향 (Effect of Forming Temperature on Spring-back in Hot Forming Quenching of AA6061 Sheet)

  • 심인보;김재홍;김병민
    • 소성∙가공
    • /
    • 제26권2호
    • /
    • pp.101-107
    • /
    • 2017
  • Aluminum alloys are widely used in automotive industry because of their high strength-to-density ratio and excellent corrosion resistance. However, conventional cold stamping of aluminum alloys leads to low formability and excessive spring-back. To overcome these problems, Hot Forming Quenching (HFQ) is applied to manufacture automotive part using aluminum alloy. The purpose of this study is to investigate effect of forming temperature on spring-back in HFQ of T6 heat treated AA6061 sheet. In this study, hat shape forming test was adopted to evaluate spring-back characteristics according to various forming temperatures. In additions, the test was also performed with warm forming conditions in comparison with dimensional accuracy of HFQed part. The experimental results showed that dimensional accuracy of HFQed part was superior to warm formed part and amount of spring-back was decreased as forming temperature rise.

CAE 해석을 이용한 자동차용 AA6061 Knuckle의 경량화 설계 (Light-Weight Design of Automotive Knuckle by Using CAE (Computer Aided Engineering))

  • 김기주
    • 한국산학기술학회논문지
    • /
    • 제17권9호
    • /
    • pp.663-668
    • /
    • 2016
  • 연료의 경제성을 증가시키는 것이 신차 개발에 필수불가결한 이슈가 되고 있으며 연료 경제성을 개선하기 위한 가장 중요한 문제는 차량 무게를 감소시키는 것이다. 본 연구에서는 연료 경제성을 증가시키기 위하여 알루미늄 합금 소재와 같은 경량 소재를 사용하여 무게를 감량시키는 것에 관한 연구를 진행하였다. 이를 위하여 너클(knuckle)의 경량화 설계과정을 주철 소재인 기존 재질 대신에 310 MPa 급의 알루미늄 6061-T6 합금으로 대체함으로써 설계 형상의 변경에 따라 von-Mises stress의 변화를 살펴보는 방법을 통하여 제시하고자 한다. 재료의 변화에 따른 너클 동강성 해석결과를 비교하였으며 FCD600 주철 소재 대비 6061 알루미늄 합금으로 설계된 너클의 동강성은 약 30% 내외 더 우수한 것으로 나타났다. 보통 동강성의 경우 진동에도 영향을 주기 때문에 동강성이 큰 경우 진동적으로도 우수한 경향을 나타낸다. 본 연구를 통하여 경량화 설계에 대한 가이드가 되는 성과를 얻을 수 있었으며 차량용 너클 개발을 위한 최적 설계 조건을 제시하는 데 기여하고자 한다.

고무 패드 벤딩 공정설계에 관한 실험적 연구 (Experimental Study on Process Design of Rubber Pad Bending)

  • 권혁철;임용택;지동철;이명호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.407-412
    • /
    • 2000
  • In this study, a research for process design in bending of structural frame of AA6061-T6 with rubber pad was conducted. In this process, the conventional lower die made of metal is replaced with a polyurethane pad, resulting in high flexibility during bending. Vulcanized polyurethane rubber with shore A hardness of 60 was used for the pad. Experiments on a newly developed bending machine were carried out by controlling the stroke of the roller and horizontal movement of roller pad lower die. From this, the relation between roller path and geometry of the materials bent was obtained for the process design of producing roof rail part of a passenger car and the experimental result was compared with the target profile. For more accurate process design, it is required to control the roller path interactively. Based on the experience in developing the prototype bending machine, it is construed that a fully automated bending system with rubber pad to produce various light-weight components for automotive body frames can be successfully developed.

  • PDF