• 제목/요약/키워드: A356

Search Result 1,978, Processing Time 0.091 seconds

Tensile Properties of Thixoformed Semi-solid A356 Alloy (반용융 성형된 반응고 A356 합금의 인장 특성)

  • Yu, Yeong-Bin;Song, Pal-Yong;Kim, Sang-Sik;Lee, Jae-Hyeon;Lee, Myeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.69-76
    • /
    • 2000
  • Despite the improved formability and processing advantages, the use of semi-solid metals is greatly limited due to the difficulties in controlling the optimum forming parameters. In the present study, the tensile properties of closed die, pressure formed semi-solid A356 alloy were examined. It was demonstrated that the tensile strength of thixoformed A356 alloy could be greatly reduced when the forming parameters were not rigorously controlled. The reduced strength of unappropriately formed products appeared to be related to the coarsening of the primary phases. The possibility of improving tensile properties of as-formed products by simple post heat treatment was also assessed.

  • PDF

Effect of Porosity on Quality Index of Tensile Property of A356 Casting Alloys (A356합금의 품질지수에 미치는 미소기공율의 영향)

  • Lee, Choong-Do
    • Journal of Korea Foundry Society
    • /
    • v.38 no.5
    • /
    • pp.95-102
    • /
    • 2018
  • The dependence of the tensile properties on variations in the porosity of A356 aluminium alloys was investigated in terms of the quality index of the tensile properties based upon the ultimate tensile strength and elongation as well as the variation of the strength coefficient and strain-hardening exponent with regard to a T6 treatment. The test specimens were prepared by low-pressure die-casting and a subsequent T6 treatment, and the experimental results of a tensile test carried out at room temperature were compared to the theoretical description using a modified constitutive model. The nominal value of the quality index of A356 alloys increases gradually with a lapse of the ageing time upon a T6 treatment, despite the fact that this value is temporarily decreased during the initial stage of ageing from a solutionised condition. Additionally, the quality index depends practically upon the porosity variation with a power law relationship without regard to whether in solutionised or artificial aged conditions. The theoretical description indicates that the strength coefficient directly determines the nominal level of the quality index. Moreover, the overall dependence of the quality index on the porosity variation is remarkably weakened with an increase in the tensile strain, whereas the quality index depends sensitively upon the porosity variation with a low value of the strain-hardening exponent.

The Effect of Electromagnetic Stirring on the Microstructure of A356 Al Alloy by the Continuous Casting Process (A356 합금의 연속주조시 전자기 교반에 따른 미세조직 변화)

  • Kim, Won-Bae;Kwon, Tae-Woo;Kim, Jong-Chul;Park, Tae-Ho;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.25 no.4
    • /
    • pp.156-160
    • /
    • 2005
  • There are many factors that influence solidification behavior during continuous casting, e.g. include superheat, casting speed, cooling rate and holding time. However, when melt is stirred by electromagnetic force, there would be some changes in its solidification behavior compared to that of the ordinary casting process. In this study, the billets of A356 alloy with a diameter of 3 inch were fabricated with electromagnetic stirring under various conditions of superheat, casting speed and input voltage of electro magnetic stirring (EMS) device. The microstructure was also investigated under the various casting conditions and electromagnetic input voltages. When increase in input voltage, the microstructure was changed from dendritic to rosette type and finally to spheroidal. With pouring temperature, casting speed and electromagnetic input voltage were $650^{\circ}C$, 100 mm/min and 140 V, respectively, the billet with a diameter of 3 inch, which has a uniform dispersed spheroidal particles in the whole area of billet except for the surface area, was manufactured.

Evaluation of Vibration Fatigue Life of Shipboard Equipment Made of Aluminum Alloy A356 (주조 알루미늄합금 A356을 사용한 해상구조물의 진동피로수명평가)

  • Cho, Ki-Dae;Kim, Jie-Eok;Yang, Sung-Chul;Jung, Hwa-Young;Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1257-1263
    • /
    • 2010
  • The naval structure exposes to environmental vibration of shafted propeller propulsion and engine vibration. The shipboard equipments are developed compliance to MIL-STD-167-1A. For this purpose, vibration fatigue life of shipboard equipment for long lives should be estimate via an analytical approach and vibration test. In this paper, High cycle fatigue strength of cast aluminum alloy A356 using shipboard equipment was evaluated by 14 S-N method. The stress applied on the structure is evaluated by an analytical method(frequency response analysis with sinusoidal input and a fatigue evaluation) to simulate a MIL-STD-167-1A test. The frequency with the maximum equivalent stress is shown by Max. test frequency and the vibration fatigue life of shipboard equipment was estimated by Miner's rule.

In-Ladle Direct Thermal Control Rheocasting of A356 Al alloy (A356 Al 합금의 In-Ladle Direct Thermal Control Rheocasting)

  • Lee, Jin-Kyu;Kim, Young-Jig;Kim, Shae-K.;Jo, Hyung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.25 no.6
    • /
    • pp.254-258
    • /
    • 2005
  • Semisolid process is possible in any material system possessing a freezing range where the microstructure should consist of the nondendritic globular solid phase separated and enclosed by the liquid phase, referred to as semisolid slurry. There are two primary semisolid processing routes, thixocasting and rheocasting. Especially, rheocasting process has become a new focus in the field of semisolid process because of its many advantages such as no special billet required and possibility of in-house scrap recycling, compared with the thixocasting process. In-Ladle direct thermal control (DTC) rheocasting has been developed, based on the fact that there is slurry and mush transition in every molten metal and the transition, which normally occurs in the range of liquid traction of 0.1 to 0.6, could be controlled by controlling solid shape and relative solid-liquid interfacial energy. In this study, A356 Al alloy was investigated to verify In-Ladle DTC rheocasting for obtaining semisolid slurry. Modeling of heat transfer was carried out to investigate the effect of pouring temperature and ladle material, geometry and temperature and the simulation results were compared with the actual experiments.