• Title/Summary/Keyword: A319 Al alloy

Search Result 13, Processing Time 0.032 seconds

Laser Cladding with Al-36%Si Powder Paste on A319 Al Alloy Surface to Improve Wear Resistance (A319 알루미늄 합금 표면에 Al-36%Si 합금분말의 레이저 클래딩에 의한 내마모성 향상)

  • Lee, Hyoung-Keun
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.58-62
    • /
    • 2017
  • A319 aluminum alloy containing 6.5% Si and 3.5% Cu as major alloying elements has been widely used in machinery parts because of its excellent castability and crack resistance. However it needs more wear resistance to extend its usage to the severe wear environments. It has been known that hyper-eutectic Al-Si alloy having more than 12.6% Si contains pro-eutectic Si particles, which give better wear resistance and lubrication characteristics than hypo-eutectic Al-Si alloy like A319 alloy. In this study, it was tried to clad hyper-eutectic Al-Si alloy on the surface of A319 alloy. In the experiments, Al-36%Si alloy powder was mixed with organic binder to make a fluidic paste. The paste was screen-printed on the A319 alloy surface, melted by pulsed Nd:YAG laser and alloyed with the A319 base alloy. As experimental parameters, the average laser power was changed to 111 W, 202 W and 280 W. With increasing the average laser power, the melting depth was changed to $142{\mu}m$, $205{\mu}m$ and $245{\mu}m$, and the dilution rate to 67.2 %, 72.4 % and 75.7 %, and the Si content in the cladding layer to 16.2 %, 14.6 % and 13.7 %, respectively. The cross-section of the cladding layer showed very fine eutectic microstructure even though it was hyper-eutectic Al-Si alloy. This seems to be due to the rapid solidification of the melted spot by single laser pulse. The average hardness for the three cladding layers was HV175, which was much higher than HV96 of A319 base alloy. From the block-on-roll wear tests, A319 alloy had a wear loss of 5.8 mg, but the three cladding layers had an average wear loss of 3.5 mg, which meant that an increase of 40 % in wear resistance was obtained by laser cladding.

Molecular Dynamics Simulation of Nano-Deformation Behavior of the Grain-Size Controlled Rheology Material (분자동력학을 이용한 결정립 제어 레오로지 소재의 나노 변형거동 전산모사)

  • Kim J. W.;Youn S. W.;Kang C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.319-326
    • /
    • 2005
  • In this study, the nano-deformation behavior of semi-solid Al-Si alloy was investigated using a molecular dynamics simulation as a part of the research on the surface crack behavior in thixoformed automobile parts. The microstructure of the grain-size controlled Al-Si alloy consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary phase of the grain-size controlled Al-Si alloy were investigated through the molecular dynamics simulation. The primary phase was assumed to be single crystal aluminum. It was shown that the vacancy occurred at the zone where silicon molecules were.

A Study on the Nano-Deformation Characteristics of Grain-Size Controlled Rheology Material Surfaces for Surface Crack Prediction (표면크랙 예측을 위한 결정립 제어 레오로지 소재 표면의 나노 변형특성에 관한 연구)

  • 윤성원;김현일;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.355-358
    • /
    • 2004
  • In this study, the deformation characteristics of grain-size controlled rheology materials surfaces were investigated as a part of the research on the surface crack prediction in semi-solid formed automobile components. The microstructure of rheology Al-Si alloys consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary region of semi-solid aluminum alloys (356 alloy and 319 alloy) were investigated through the nanoindentation/scratch experiments and the AFM observation.

  • PDF

A Study on the Fatigue Crack Growth Behavior of A Ti-24Al-11Nb Alloy (Ti-24Al-11Nb 합금의 피로균열성장거동에 관한 연구)

  • Bae, Gyu-Sik;Lee, Mun-Hui
    • Korean Journal of Materials Research
    • /
    • v.2 no.5
    • /
    • pp.313-319
    • /
    • 1992
  • The mechanisms of fatigue crack growth (FCG) in a Ti$_3$Al-based (${\alpha}_2$) alloy, Ti-24Al-11Nb (a/o) with acicular microstructure were studied with particular attention focused on the fatigue crack path through the microstructure and on the effects of specimen orientation and crack closure. The results showed that the fatigue cracks of Ti-24Al-11Nb alloy grew much faster than conventional titanium alloys, with little difference in FCG rates for TL and TS orientations. The fatigue crack paths revealed crystallographic transgranular fracture with frequent serrations and branching. This is in agreement with the known effects of slip planarity and microstructure on the FCG behavior. The load-displacement hysteresis loops showed that the crack closure influenced the FCG behavior.

  • PDF

Effects of Cr and Nb on the nigh Temperature Oxidation of TiAl

  • D.B. Lee;K.B. Park;M. Nakamura
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.319-319
    • /
    • 1999
  • From isothermal and cyclic oxidation tests on thermomechanically treated Ti-5%Al, Ti47%Al-4%Cr, and Ti-48%Al-2%Cr-2%Nb alloys at 800, 900, 1000℃ in air, it was found that Ti-48%Al-2%Cr-2%Nb and Ti-47%Al-4%Cr had the best and the worst oxidation resistance, respectively. The oxide scales consisted primarily of TiO₂and Al₂O₃, with and without a small amount of dissolved Cr and 7b ions, depending on the alloy composition. These ions were slightly enriched inside the inner oxide layer, and strongly enriched around the scale-matrix interface. The outer TiO₂-rich layer was formed by the outward diffusion of Ti ions, while the inner (TiO₂+A1₂O₃,) mixed layer was formed by the inward transport of oxygen. The outward movement of Al ions farmed the intermediate Al₂O₃-rich Iayer, above talc prepared alloys.

High Temperature Fatigue Deformation Behavior of Automotive Heat Resistant Aluminum Alloys (자동차 부품용 내열 알루미늄 합금의 고온 피로 변형 거동)

  • Park, Jong-Soo;Sung, Si-Young;Han, Bum-Suck;Jung, Chang-Yeol;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.28-38
    • /
    • 2010
  • High temperature high cycle and low cycle fatigue deformation behavior of automotive heat resistant aluminum alloys (A356 and A319 based) were investigated in this study. The microstructures of both alloys were composed of primary Al-Si dendrite and eutectic Si phase. However, the size and distribution for eutectic Si phase varied: a coarse and inhomogeneous distributed was observed in alloy B (A319 based). A brittle intermethallic phase of ${\alpha}-Fe\;Al_{12}(Fe,Mn)_3Si_2$ was detected only in B alloy. Alloy B exhibited high fatigue life only under a high stress amplitued condition in the high cycle fatigue results, whereas alloy A showed high fatigue life when stress was lowered. With regard to the low-cycle fatigue result ($250^{\circ}C$) showing higher fatigue life as ductility increased, alloy A demonstrated higher fatigue life under all of the strain amplitude conditions. Fractographic observations showed that large porosities and pores near the outside surface could be the main factor in the formation of fatigue cracks. In alloy B. micro-cracks were formed in both the brittle intermetallic and coarse Si phasese. These micro-cracks then coalesced together and provided a path for fatigue crack propagation. From the observation of the differences in microstructure and fractography of these two automotive alloys, the authors attempt to explain the high-temperature fatigue deformation behavior of heat resistant aluminum alloys.

Powder Forging of Rapidly Solidified hi-Si Alloy with Back Pressure

  • Kohno, T.;Kawase, K.;Otsuki, M.;Morimoto, K.
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.319-323
    • /
    • 1998
  • Powder forging with a back pressure was investigated for production of automobile and compressor parts made of a rapidly solidified Al-Si alloy powder. Disk-shaped green compacts made of a rapidly solidified Al-Si alloy powder were hot forged, and hubs were formed by loading back pressure on their top. The influences of the back pressure and die temperatures on forgeabiliy and properties of parts made of a rapidly solidified Al-Si alloy powder were examined. This method was also applied to the production of a scroll part. The results of these studies are summarized as follows : 1. A back pressure on the hub top is very effective for consolidation and preventing crack formation in the hub. 2. When a back pressure tess than 98 MPa is applied, the forging pressure increases by the same amount of the applied back pressure. With more than 98 MPa, the forging pressure increases further due to an increased friction at the hub side. 3. Die temperatures higher than approximately 670k are needed in order to consolidate well the hub top without cracks.

  • PDF

Drill Shape and Cutting Conditions for Environmentally Conscious Drilling (환경친화적 건식 드릴링을 위한 드릴형상 및 절삭조건)

  • 고태조
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.36-44
    • /
    • 2000
  • In this paper drill shape and cutting conditions for environmentally conscious dry drilling of A319 Al-alloy are studied by experimental method. The experiment is planned with Taguchi's method that is based on the orthogonal array of design factors. The result is summarized as follows (1) Drill geometry optimization can increase the number of holes in dry drilling and also large helix angle and large point angle are desirable in dry drilling. (2) It is found that cutting conditions that is cutting speed and feed rate are closely related to the drill geometry(3) For dry drilling of Al-alloys drill shape and cutting conditions are selected and tested by experimental method. But it is found that the perfect dry drilling is difficult because of the machining characteristics of Al-alloys and so new machining method such as minimal lubricant application is required.

  • PDF

The Effect of Copper on Feeding Characteristics in Al-Si Alloys

  • Young-Chan Kim;Jae-Ik Cho
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.294-301
    • /
    • 2023
  • The effects of Cu on feeding and macro-porosity characteristics were investigated in hypo- (A356 and 319) and hypereutectic (391) aluminum-silicon alloys. T-section and Tatur tests showed that the feeding and macro-porosity characteristics were significantly different between the hypo- and hypereutectic alloys. The hole and the pipe in the T-section and the Tatur casting in hypereutectic alloy showed a rough and irregular shape due to the faceted growth of the primary silicon, while the results of the hypoeutectic alloys exhibited a rather smooth surface. However, the addition of Cu did not strongly affect the macro-feeding behavior. It is known that copper segregates and interferes the feeding process in the last stage of solidification, possibly leading to form more amount of micro shrinkage porosity by the addition of Cu. The macro porosity formation mechanism and feeding properties were discussed upon T-section and Tatur tests together with an alloying addition.

A Study on the properties of aluminum nitride films on the Al7075 deposited by pulsed DC reactive magnetron sputtering

  • Kim, Jung-hyo;Cha, Byung-Chul;Lee, Keun-Hak;Park, Won-Wook
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.179-180
    • /
    • 2012
  • Aluminum alloys are widely known as non-ferrous metal with light weight and high strength. Consequently, these materials take center stage in the aircraft and automobile industry. The Al7075 aluminum alloy is based on the Al-Zn-Mg-Cu and one of the strongest wrought aluminum alloys. Aluminum nitride has ten times higher thermal conductivity($319W/m{\cdot}K$) than Al2O3 and also has outstanding electric insulation($1{\times}1014{\Omega}{\cdot}cm$). Furthermore, it has high mechanical property (430 MPa) even though its co-efficient of thermal expansion is less than alumina For these reasons, it has great possibilities to be used for not only the field which needs high strength lightweight but also electronic material field because of its suitability to be applied to the insulator film of PCB or wafer of ceramic with high heat conduction. This paper investigates the mechanical properties and corrosion behavior of aluminum alloy Al7075 deposited with aluminum nitride thin films To improve the surface properties of Al7075 with respect to hardness, and resistance to corrosion, aluminum nitride thin films have been deposited by pulsed DC reactive magnetron sputtering. The pulsed DC power provides arc-free deposition of insulating films.

  • PDF