• Title/Summary/Keyword: A16061

Search Result 66, Processing Time 0.026 seconds

Analysis of IR lens mounting with elastomer (밀봉재를 이용한 적외선 렌즈 마운팅 분석)

  • 김연수;김현숙;최세철;김창우
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.6
    • /
    • pp.460-462
    • /
    • 2001
  • We have analyzed the characteristics of IR lens mounting with elastomer and applied the results to the mounting of a silicon lens with diameter 117 mm which is the objective of a thermal imaging system. The elastomer, the 577 primerless silicone adhesive (Dow Corning Co.) which is heat cure type, and the mount material, A16061 are used for our analysis. Theoretical analysis gives the result that the space between lens and mount is required to be more than 250 ${\mu}{\textrm}{m}$ under the operational temperature conditions of -40~+6$0^{\circ}C$.

  • PDF

Multi-objective Optimization of Lower Control Arm Considering the Stability for Weight Reduction (경량화에 대한 안전성을 고려한 로우컨트롤암의 다목적 최적설계)

  • 이동화;박영철;허선철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.94-101
    • /
    • 2003
  • Recently, miniaturization and weight reduction is getting more attention due to various benefits in automotive components design. It is a trend that the design of experiment(DOE) and statical design method are frequently used for optimization. In this research, the safety of lower control arm is evaluated according to its material change form S45C to A16061 for the reduction of arm's weight. The variance analysis on the basis of structure analysis and DOE is applied to the lower control m. We have proposed a statistical design model to evaluate the effect of structural modification by performing the practical multi-objective optimization considering mass, stress and deflection.

Flow Stress of A16061 at Elevated Temperature and Its Application to Forging Simulation for verification (Al6061의 고온변형특성 및 단조 시뮬레이션 적용을 통한 검증)

  • Eom, J.G.;Jang, S.M.;Lee, M.C.;Jung, S.J.;Park, Geon-Hyeong;Gwak, Yang-Seop;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.474-477
    • /
    • 2009
  • In this paper, flow stress of Al6061 is obtained by compression test in the range of temperature from $300^{\circ}C$ to $550^{\circ}C$ and effective strain-rate from 0.1/s to 20.0/s. The flow stress information is used to simulate an aluminum hot forging process. Non-isothermal simulation is carried out by a rigid-thermoviscoplastic finite element method. The predictions are compared with the experiments in terms of the deformed shape of material.

  • PDF

Features Extraction of Tool Wear and its Detection using Neural Network (가공 재질에 따른 공구 마멸의 특성 추출과 신경회로망을 이용한 마멸 검출)

  • 이호영;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.89-94
    • /
    • 1995
  • A16061, SB41 and SM45C was used for developing tool wear monitoring system in face milling. First of all, Neural networks of which input are 8 $_{th}$ order AR morel parameters, frequency band energies, cutting conditions was used to monitor tool wear for each material. Finally, A unified neural network, which has tensile strengths of each material as an additional input, was constructed to consider the effect three materials on the features of tool wear. It was verified that tensile strength is the one of properties of workpiece materials.s.

  • PDF

Prediction for Forming Limit of Tube Warm Hydroforming Based on the Ductile Fracture Criteria (연성파괴 이론을 적용한 튜브 온간액압성형의 성형한계 예측)

  • Yi, H.K.;Moon, Y.H.;Lee, J.H.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.426-431
    • /
    • 2007
  • Hydroformability and fracture criteria of FE analysis based on ductile fracture were investigated in warm hydroforming of A16061 tube. To evaluate the hydroformability, uni-axial tensile test and bulge test were performed at room temperature and $200^{\circ}C$. The measured flow stresses were used as input parameters for FE analysis. The damage values were calculated by FE analysis based on ductile fracture criteria at maximum radius of free bulged tubes. Damage values were compared of hexagonal shaped hydroformed parts. As a result, the formability by critical damage value for extruded tube is lower than that of full annealed tube up to 0.5.

Rigid-Plastic Finite Element Analysis of Burr Formation at the Exit Stage in Orthogonal Cutting (2차원 절삭에서 공구이탈시 발생하는 버에 관한 강소성 유한요소해석)

  • 고대철;김병민;고성림
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.125-133
    • /
    • 1998
  • The objective of this study is to propose a new approach for modelling of burr formation process during orthogonal cutting when the tool exits the workpiece. This approach is based on the rigid-plastic finite element method combined with the ductile fracture criterion and the element kill method. This approach is applied to orthogonal cutting process to predict the fracture location and the fracture angle as well as the cutting force. To validate this approach, orthogonal cutting tests inside SEM(scanning electron microscope) at very low speed are carried out using A16061-T6 to observe the behavior of the material during the chip and the burr formation. The results of the experiment are compared with those of the finite element simulation.

  • PDF

A study on the improvement of interface heat transfer coefficient for hot forging (열간단조시 계면열전달계수의 신뢰성 향상에 관한 연구)

  • Kwon J. W.;Lee J. H.;Lee Y. S.;Kwon Y. N.;Bae W. B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.226-229
    • /
    • 2004
  • The temperature difference between die and workpiece has been frequently caused to various surface defects. The distribution and change for the temperature of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperature changes were mainly affected by the interface heat transfer coefficient. Therefore, the coefficient is necessary to predict the temperature changes of die and workpiece. The temperature calculated by FEM result might be well compared with the measured temperature. However, it is impossible to measure directly the temperature distribution of forged part. Therefore, the comparisons between measured temperature and predicted values are preformed by the microstructure in various temperature. Since the differences of microstructure could be obvious, the temperature criteria is set near by the incipient melting temperature. The predicted temperatures are well coincided with the measured values.

  • PDF

주조/단조 공정에서 $A\ell$6061의 단조효과에 관한 연구

  • 권오혁;김형진;배원병;조종래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.251-251
    • /
    • 2004
  • 이 연구에서는 주단조 공정을 자동차 부품인 low control arm 제조에 적용하였다. Al6061에 주단조 공정을 적용함므로써 재료비 감소와 기존의 스틸제품보다 경량화 효과를 얻을 수 있다는 것을 증명하기 위함이다. 첫째로 단조 재료인 A16061의 최적 주조조건을 찾기 위하여, 주조 실험은 알루미늄의 주입온도, 금형온도, 주입시간을 조절함으로써 수행되어졌다. 최적주조조건은 주입온도 $700^{\circ}C$, 금형온도 30$0^{\circ}C$, 주입시간 10초로 정하여졌다. 각각의 미세조직을 관찰하고 응력-변형률곡선을 구하기 위하여 열가단조실험은 빌렛온도, 변형률속도와 감소율을 기초로 하여 수행되어졌다.(중략)

  • PDF

Characteristic Strength of $\delta$-Al$_2$O$_3$/Aluminum Composite by Rheo-compocasting (반용융 가공법에 의한 $\delta$-Al$_2$O$_3$/Aluminum 복합재료의 강도 특성)

  • 이상필;김만수;김석호;윤한기
    • Proceedings of the KWS Conference
    • /
    • 1995.04a
    • /
    • pp.155-159
    • /
    • 1995
  • A16061 alloy reinforced with 10 vol% $\delta$-A1$_2$O$_3$ short fiber have been fabricated by Rheo-compocasting and squeeze casting and extruded at high temperature using conical shape die and curved shape die with various extrusion ratios.. Tensile and hardness tests were carried out to examine mechanical properties of extruded materials and SEM observation of fractured surface was capable of accounting for fracture mechanism and bonding state of fiber and matrix.

  • PDF

Effect of MML on the Wear Behavior of Al/SiCp Composites (Al/SiCp 복합재료의 마모거동에 미치는 MML의 영향)

  • Kim, Yeong-Sik;Kim, Kyun-Tak
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.66-72
    • /
    • 2009
  • Al-based composites reinforced with SiC particulate were fabricated using a thermal spray process, and dry sliding wear behavior of the composites was investigated. Pre-mixed Al and SiC powders were sprayed on an A16061 substrate by flame spraying, and dry sliding wear test were performed under various sliding speed and applied load conditions against ${Al_2}{O_3}$ ball. Wear behavior of the composites was studied by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). And build-up mechanism of MML on the worn surface of the composites was examined. It was revealed that these MML was formed of debris from the contact surface of the composites and effected to wear behavior of the composites protecting the contact surface of the composites.