• 제목/요약/키워드: A16061

검색결과 66건 처리시간 0.034초

밀봉재를 이용한 적외선 렌즈 마운팅 분석 (Analysis of IR lens mounting with elastomer)

  • 김연수;김현숙;최세철;김창우
    • 한국광학회지
    • /
    • 제12권6호
    • /
    • pp.460-462
    • /
    • 2001
  • 밀봉재를 사용하는 적외선 렌즈 마운트를 분석하고, 3-5$\mu\textrm{m}$에서 작동하는 전방 관측 적외선 열상장비의 대물렌즈인 직경 117mm의 Si 렌즈 마운팅 설계에 적용하였다. 밀봉재료는 Dow Corning 사의 heat cure 타입인 577 primerless Silicone Adhesive(MIL-PRF-23586F)을 이용하였으며, 마운트 재질로는 Al 6061을 사웅하였다. 이론적으로 렌즈와 마운트간의 간격은 -40~+6$0^{\circ}C$의 적용 온도환경에 대하여 250$\mu\textrm{m}$ 이상이 되어야 함을 알 수 있었다.

  • PDF

경량화에 대한 안전성을 고려한 로우컨트롤암의 다목적 최적설계 (Multi-objective Optimization of Lower Control Arm Considering the Stability for Weight Reduction)

  • 이동화;박영철;허선철
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.94-101
    • /
    • 2003
  • Recently, miniaturization and weight reduction is getting more attention due to various benefits in automotive components design. It is a trend that the design of experiment(DOE) and statical design method are frequently used for optimization. In this research, the safety of lower control arm is evaluated according to its material change form S45C to A16061 for the reduction of arm's weight. The variance analysis on the basis of structure analysis and DOE is applied to the lower control m. We have proposed a statistical design model to evaluate the effect of structural modification by performing the practical multi-objective optimization considering mass, stress and deflection.

Al6061의 고온변형특성 및 단조 시뮬레이션 적용을 통한 검증 (Flow Stress of A16061 at Elevated Temperature and Its Application to Forging Simulation for verification)

  • 엄재근;장성민;이민철;정순종;박건형;곽양섭;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.474-477
    • /
    • 2009
  • In this paper, flow stress of Al6061 is obtained by compression test in the range of temperature from $300^{\circ}C$ to $550^{\circ}C$ and effective strain-rate from 0.1/s to 20.0/s. The flow stress information is used to simulate an aluminum hot forging process. Non-isothermal simulation is carried out by a rigid-thermoviscoplastic finite element method. The predictions are compared with the experiments in terms of the deformed shape of material.

  • PDF

가공 재질에 따른 공구 마멸의 특성 추출과 신경회로망을 이용한 마멸 검출 (Features Extraction of Tool Wear and its Detection using Neural Network)

  • 이호영;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.89-94
    • /
    • 1995
  • A16061, SB41 and SM45C was used for developing tool wear monitoring system in face milling. First of all, Neural networks of which input are 8 $_{th}$ order AR morel parameters, frequency band energies, cutting conditions was used to monitor tool wear for each material. Finally, A unified neural network, which has tensile strengths of each material as an additional input, was constructed to consider the effect three materials on the features of tool wear. It was verified that tensile strength is the one of properties of workpiece materials.s.

  • PDF

연성파괴 이론을 적용한 튜브 온간액압성형의 성형한계 예측 (Prediction for Forming Limit of Tube Warm Hydroforming Based on the Ductile Fracture Criteria)

  • 이혜경;문영훈;이정환;이영선
    • 소성∙가공
    • /
    • 제16권6호
    • /
    • pp.426-431
    • /
    • 2007
  • Hydroformability and fracture criteria of FE analysis based on ductile fracture were investigated in warm hydroforming of A16061 tube. To evaluate the hydroformability, uni-axial tensile test and bulge test were performed at room temperature and $200^{\circ}C$. The measured flow stresses were used as input parameters for FE analysis. The damage values were calculated by FE analysis based on ductile fracture criteria at maximum radius of free bulged tubes. Damage values were compared of hexagonal shaped hydroformed parts. As a result, the formability by critical damage value for extruded tube is lower than that of full annealed tube up to 0.5.

2차원 절삭에서 공구이탈시 발생하는 버에 관한 강소성 유한요소해석 (Rigid-Plastic Finite Element Analysis of Burr Formation at the Exit Stage in Orthogonal Cutting)

  • 고대철;김병민;고성림
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.125-133
    • /
    • 1998
  • The objective of this study is to propose a new approach for modelling of burr formation process during orthogonal cutting when the tool exits the workpiece. This approach is based on the rigid-plastic finite element method combined with the ductile fracture criterion and the element kill method. This approach is applied to orthogonal cutting process to predict the fracture location and the fracture angle as well as the cutting force. To validate this approach, orthogonal cutting tests inside SEM(scanning electron microscope) at very low speed are carried out using A16061-T6 to observe the behavior of the material during the chip and the burr formation. The results of the experiment are compared with those of the finite element simulation.

  • PDF

열간단조시 계면열전달계수의 신뢰성 향상에 관한 연구 (A study on the improvement of interface heat transfer coefficient for hot forging)

  • 권진욱;이정환;이영선;권용남;배원병
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.226-229
    • /
    • 2004
  • The temperature difference between die and workpiece has been frequently caused to various surface defects. The distribution and change for the temperature of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperature changes were mainly affected by the interface heat transfer coefficient. Therefore, the coefficient is necessary to predict the temperature changes of die and workpiece. The temperature calculated by FEM result might be well compared with the measured temperature. However, it is impossible to measure directly the temperature distribution of forged part. Therefore, the comparisons between measured temperature and predicted values are preformed by the microstructure in various temperature. Since the differences of microstructure could be obvious, the temperature criteria is set near by the incipient melting temperature. The predicted temperatures are well coincided with the measured values.

  • PDF

주조/단조 공정에서 $A\ell$6061의 단조효과에 관한 연구

  • 권오혁;김형진;배원병;조종래
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 춘계학술대회 논문요약집
    • /
    • pp.251-251
    • /
    • 2004
  • 이 연구에서는 주단조 공정을 자동차 부품인 low control arm 제조에 적용하였다. Al6061에 주단조 공정을 적용함므로써 재료비 감소와 기존의 스틸제품보다 경량화 효과를 얻을 수 있다는 것을 증명하기 위함이다. 첫째로 단조 재료인 A16061의 최적 주조조건을 찾기 위하여, 주조 실험은 알루미늄의 주입온도, 금형온도, 주입시간을 조절함으로써 수행되어졌다. 최적주조조건은 주입온도 $700^{\circ}C$, 금형온도 30$0^{\circ}C$, 주입시간 10초로 정하여졌다. 각각의 미세조직을 관찰하고 응력-변형률곡선을 구하기 위하여 열가단조실험은 빌렛온도, 변형률속도와 감소율을 기초로 하여 수행되어졌다.(중략)

  • PDF

반용융 가공법에 의한 $\delta$-Al$_2$O$_3$/Aluminum 복합재료의 강도 특성 (Characteristic Strength of $\delta$-Al$_2$O$_3$/Aluminum Composite by Rheo-compocasting)

  • 이상필;김만수;김석호;윤한기
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1995년도 특별강연 및 춘계학술발표 개요집
    • /
    • pp.155-159
    • /
    • 1995
  • A16061 alloy reinforced with 10 vol% $\delta$-A1$_2$O$_3$ short fiber have been fabricated by Rheo-compocasting and squeeze casting and extruded at high temperature using conical shape die and curved shape die with various extrusion ratios.. Tensile and hardness tests were carried out to examine mechanical properties of extruded materials and SEM observation of fractured surface was capable of accounting for fracture mechanism and bonding state of fiber and matrix.

  • PDF

Al/SiCp 복합재료의 마모거동에 미치는 MML의 영향 (Effect of MML on the Wear Behavior of Al/SiCp Composites)

  • 김영식;김균택
    • Tribology and Lubricants
    • /
    • 제25권1호
    • /
    • pp.66-72
    • /
    • 2009
  • Al-based composites reinforced with SiC particulate were fabricated using a thermal spray process, and dry sliding wear behavior of the composites was investigated. Pre-mixed Al and SiC powders were sprayed on an A16061 substrate by flame spraying, and dry sliding wear test were performed under various sliding speed and applied load conditions against ${Al_2}{O_3}$ ball. Wear behavior of the composites was studied by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). And build-up mechanism of MML on the worn surface of the composites was examined. It was revealed that these MML was formed of debris from the contact surface of the composites and effected to wear behavior of the composites protecting the contact surface of the composites.