• Title/Summary/Keyword: A.tumefaciens

Search Result 320, Processing Time 0.042 seconds

Agrobacterium tumefaciens-mediated Transformation in Colletotrichum falcatum and C. acutatum

  • Maruthachalam, Karunakaran;Nair, Vijayan;Rho, Hee-Sool;Choi, Jae-Hyuk;Kim, Soon-Ok;Lee, Yong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.234-241
    • /
    • 2008
  • Agrobacterum tumefaciens-mediated transformation (ATMT) is becoming an effective system as an insertional mutagenesis tool in filamentous fungi. We developed and optimized ATMT for two Colletotrichum species, C. falcatum and C. acutatum, which are the causal agents of sugarcane red rot and pepper anthracnose, respectively. A. tumefaciens strain SK1044, carrying a hygromycin phosphotransferase gene (hph) and a green fluorescent protein (GFP) gene, was used to transform the conidia of these two Colletotrichum species. Transformation efficiency was correlated with co-cultivation time and bacterial cell concentration and was higher in C. falcatum than in C. acutatum. Southern blot analysis indicated that about 65% of the transformants had a single copy of the T-DNA in both C. falcatum and C. acutatum and that T-DNA integrated randomly in both fungal genomes. T-DNA insertions were identified in transformants through thermal asymmetrical interlaced PCR (TAIL-PCR) followed by sequencing. Our results suggested that ATMT can be used as a molecular tool to identify and characterize pathogenicity-related genes in these two economically important Colletotrichum species.

Agrobacterium-mediated Transformation via Somatic Embryogenesis System in Korean fir (Abies koreana Wil.), A Korean Native Conifer

  • Lee, Hyoshin;Moon, Heung-Kyu;Park, So-Young
    • Korean Journal of Plant Resources
    • /
    • v.27 no.3
    • /
    • pp.242-248
    • /
    • 2014
  • This study was conducted to establish an efficient transformation system by using somatic embryogenesis in an important Korean native conifer, Korean fir (Abies koreana). Embryogenic masses were induced from mature zygotic embryos of the Korean fir on Schenk and Hildebrandt medium, which was supplemented with thidiazuron. For genetic transformation, the embryogenic masses were co-cultivated with a disarmed Agrobacterium tumefaciens strain C58/pMP90 containing the plasmid vector pBIV10 or LBA4404 containing the plasmid vector MP90. Both vectors contain the kanamycin resistance and beta-glucuronidase (GUS) reporter genes. A total of 48 lines of embryogenic masses were selected on mLV medium containing $50{\mu}g/mL$ of kanamycin after 4 weeks of culture, following 3 days of co-cultivation with A. tumefaciens strain C58/pMP90 carrying pBIV10 (none of the lines was cultivated with strain LBA4404 carrying MP90). Quantitative real-time PCR was performed, and high levels of GUS transcripts were observed in the 48 putative transgenic lines; however, the control (non-transgenic line) showed negative results. Results of histochemical staining showed that the expression of the GUS reporter gene was observed in somatic embryos that developed from the embryogenic masses of all 48 lines. Stably transformed cultures were successfully produced by co-cultivation with A. tumefaciens strain C58/pMP90 carrying pBIV10 in Korean fir. Here, we have reported an Agrobacterium-mediated gene transfer protocol via somatic embryogenesis that may be helpful in developing breeding and conservation strategies for the Korean fir.

Thermotolerant Transgenic Ginseng (Panax ginseng C.A. Meyer) by Introducing Isoprene Synthase Gene through Agrobacterium tumefaciens-mediated Transformation

  • Kim, Ok-Tae;Hyun, Dong-Yun;Bang, Kyong-Hwan;Jung, Su-Jin;Kim, Young-Chang;Shin, Yu-Su;Kim, Dong-Hwi;Kim, Swon-Won;Seong, Nak-Sul;Cha, Seon-Woo;Park, Hee-Woon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.2
    • /
    • pp.95-99
    • /
    • 2007
  • The cost of conventional cultivation of ginseng (Panax ginseng C.A. Meyer) is very expensive, because shadow condition should be maintained during cultivation periods owing to inherently weak plant for high-temperature. Therefore, application of plant biotechnology may be possible to overcome these difficulties caused by conventional breeding of ginseng. Transgenic plants were produced via Agrobacterium tumefaciens Gv3101, both carrying the binary plasmid pBI121 mLPISO with nptII and Iso (isoprene synthase) gene. Integration of the transgenes into the P. ginseng nuclear genome was confirmed by PCR analysis using nptII primers and Iso primers. RT-PCR result also demonstrated the foreign isoprene synthase gene in three transgenic plant lines (T1, T3, and T5) which was expressed at the transcriptional level. When whole plants of transgenic ginseng were exposed to high temperature at $46^{\circ}C$ for 1 h, a non-transformed plant was wilted from heat shock, whereas a transgenic plant appeared to remain healthy. We suggest that the introduction of exogenous isoprene synthase is considered as alternative methods far generating thermotolerance ginseng.

Factors Affecting Agrobacterium tumefaciens-mediated Transformation of Panax ginseng C.A. Meyer

  • Kim, Ok-Tae;Jung, Su-Jin;Bang, Kyong-Hwan;Kim, Young-Chang;Shin, Yu-Su;Sung, Jung-Sook;Park, Chun-Geon;Seong, Nak-Sul;Cha, Seon-Woo;Park, Hee-Woon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.2
    • /
    • pp.100-104
    • /
    • 2007
  • A protocol for the production of transgenic Panax ginseng C.A. Meyer was established via Agrobacterium tumefaciens-mediated genetic transformation of direct somatic embryos. A number of conditions related to the co-cultivation were tested with respect to maximizing transformation efficiency. The results showed that pH of the co-cultivation medium (5.7), the bacterial growth phase (optical density; $OD_{600}$ = 0.8), co-cultivation period (3 days), and acetosyringone concentration $(100\;{\mu}M)$ had positive effects on transformation. Selected plantlets were cultured on the medium at an elevated hygromycin level(30 mg/l). Integration of the transgenes into the P. ginseng nuclear genome was confirmed by PCR analysis using hpt primers and by Southern hybridization using hpt-specific probe. The transgenic plantlets were obtained after 3-month cultivation and did not show any detectable variation in morphology or growth characteristics compared to wild-type plants.

Construction of an Agroinfectious Clone of a Korean Isolate of Sweet Potato Symptomless Virus 1 and Comparison of Its Infectivity According to Agrobacterium tumefaciens Strains in Nicotiana benthamiana

  • Phuong T. Ho;Hee-Seong Byun;Thuy T. B. Vo;Aamir Lal;Sukchan Lee;Eui-Joon Kil
    • The Plant Pathology Journal
    • /
    • v.39 no.3
    • /
    • pp.255-264
    • /
    • 2023
  • Sweet potato symptomless virus 1 (SPSMV-1) is a single-stranded circular DNA virus, belonging to the genus Mastrevirus (family Geminiviridae) that was first identified on sweet potato plants in South Korea in 2012. Although SPSMV-1 does not induce distinct symptoms in sweet potato plants, its co-infection with different sweet potato viruses is highly prevalent, and thus threatens sweet potato production in South Korea. In this study, the complete genome sequence of a Korean isolate of SPSMV-1 was obtained by Sanger sequencing of polymerase chain reaction (PCR) amplicons from sweet potato plants collected in the field (Suwon). An infectious clone of SPSMV-1 (1.1-mer) was constructed, cloned into the plant expression vector pCAMBIA1303, and agro-inoculated into Nicotiana benthamiana using three Agrobacterium tumefaciens strains (GV3101, LBA4404, and EHA105). Although no visual differences were observed between the mock and infected groups, SPSMV-1 accumulation was detected in the roots, stems, and newly produced leaves through PCR. The A. tumefaciens strain LBA4404 was the most effective at transferring the SPSMV-1 genome to N. benthamiana. We confirmed the viral replication in N. benthamiana samples through strand-specific amplification using virion-sense- and complementary-sense-specific primer sets.

Detection of a Quorum-Sensing Inhibitor from the Natural Products (천연물로부터 Quorum Sensing 저해제의 탐색)

  • Kim, Tae-Woo;Cha, Ji-Young;Lee, Jun-Seung;Min, Bok-Kee;Baik, Hyung-Suk
    • Journal of Life Science
    • /
    • v.18 no.2
    • /
    • pp.206-212
    • /
    • 2008
  • The quorum sensing (QS) regulatory network has been the subject of extensive studies during recent years and has also attracted a lot of attention because it both positively and negatively regulates various putative virulence factors, although initially considered to be a specialized system of Vibrio fischeri and related species. In this study, to identify the novel materials which inhibit QS system of microorganisms, extracts of eighteen natural products were tested by bioassay using N-(3-oxohexanoyl)-$_L$-homoserine lactone and N-(3-oxooctanoyl)-$_L$-homoserine lactone synthesized in this experiment and an Agrobacterium tumefaciens NT1 biosensor strain containing a traI::lacZ fusion. The result indicated that the extracts of cabbage, leek, and onion exhibited the QS inhibition activity. Thus, materials contained in the extracts were isolated via recycling preparative HPLC and were purified via a JAIGEL-LS255 column. The common fraction corresponding to a peak of the 83 min point of them quenched the quorum sensing of A. tumefaciens NT1 biosensor strain in ABMM containing X-gal and was designated quorum sensing inhibitor-83 min (QSI-83). The QSI-83 exhibited the heat stability and did not inhibit the growth of A. tumefaciens NTl. Furthermore, thin layer chromatography (TLC) results suggested that these novel materials may be antagonists of N-acyl homoserine lactone or may inhibit the QS autoinducer synthesis by Pseudomonas syringae pv. tabaci.