• Title/Summary/Keyword: A.I(Artificial Intelligence)

Search Result 286, Processing Time 0.022 seconds

Study on future advertising change according to the development of artificial intelligence and metaverse (인공지능과 메타버스 발전에 따른 미래 광고 변화에 관한 연구)

  • Ahn, Jong-Bae
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.873-879
    • /
    • 2022
  • In the future, AI and the metaverse are becoming so powerful that their application areas and influences are swallowing up the world. The advertising field is no exception, and it is becoming more important to predict, analyze, and strategize these future changes. In order to study the future change of advertising according to the development of artificial intelligence and metaverse, literature research related to the development of artificial intelligence and metaverse technology and the resulting change in the advertising environment, in-depth interviews with future and advertising experts, and Delphi technique research method I want to study change. First, through this study, we would like to examine the opinions of experts through in-depth interviews on the development of artificial intelligence and metaverse technology and the changes in the advertising sector in the post-coronavirus era of civilizational transformation. In addition, the Delphi technique is used to determine how important the change is by future advertising technology area, future advertising media area, future advertising form area, future advertising effect area, future advertising application area, and future advertising process area, and at what point in the future it will change. In addition, we want to study how the future advertising form will change in detail. Also, based on this, we would like to propose a countermeasure for the advertising industry.

A Case Study on the Introduction and Use of Artificial Intelligence in the Financial Sector (금융권 인공지능 도입 및 활용 사례 연구)

  • Byung-Jun Kim;Sou-Bin Yun;Mi-Ok Kim;Sam-Hyun Chun
    • Industry Promotion Research
    • /
    • v.8 no.2
    • /
    • pp.21-27
    • /
    • 2023
  • This study studies the policies and use cases of the government and the financial sector for artificial intelligence, and the future policy tasks of the financial sector. want to derive According to Gartner, noteworthy technologies leading the financial industry in 2022 include 'generative AI', 'autonomous system', 'Privacy Enhanced Computation (PEC) was selected. The financial sector is developing new technologies such as artificial intelligence, big data, and blockchain. Developments are spurring innovation in the financial sector. Data loss due to the spread of telecommuting after the corona pandemic As interests in sharing and personal information protection increase, companies are expected to change in new digital technologies. Global financial companies also utilize new digital technology to develop products or manage and operate existing businesses. I n order to promote process innovation, I T expenses are being expanded. The financial sector utilizes new digital technology to prevent money laundering, improve work efficiency, and strengthen personal information protection. are applying In the era of Big Blur, where the boundaries between industries are disappearing, the competitive edge in the challenge of new entrants In order to preoccupy the market, financial institutions must actively utilize new technologies in their work.

Research on Process Technology of Molded Bridge Die on Substrate (MBoS) for Advanced Package (Advanced Package용 Molded Bridge Die on Substrate(MBoS) 공정 기술 연구)

  • Jaeyoung Jeon;Donggyu Kim;Wonseok Choi;Yonggyu Jang;Sanggyu Jang;Yong-Nam Koh
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.16-22
    • /
    • 2024
  • With advances of artificial intelligence (AI) technology, the demand is increasing for high-end semiconductors in various places such as data centers. In order to improve the performance of semiconductors, reducing the pitch of patterns and increasing density of I/Os are required. For this issue, 2.5dimension(D) packaging is gaining attention as a promising solution. The core technologies used in 2.5D packaging include microbump, interposer, and bridge die. These technologies enable the implementation of a larger number of I/Os than conventional methods, enabling a large amount of information to be transmitted and received simultaneously. This paper proposes the Molded Bridge die on Substrate (MBoS) process technology, which combines molding and Redistribution Layer (RDL) processes. The proposed MBoS technology is expected to contribute to the popularization of next-generation packaging technology due to its easy adaption and wide application areas.

The Impact of Artificial Intelligence Adoption in Candidates Screening and Job Interview on Intentions to Apply (채용 전형에서 인공지능 기술 도입이 입사 지원의도에 미치는 영향)

  • Lee, Hwanwoo;Lee, Saerom;Jung, Kyoung Chol
    • The Journal of Information Systems
    • /
    • v.28 no.2
    • /
    • pp.25-52
    • /
    • 2019
  • Purpose Despite the recent increase in the use of selection tools using artificial intelligence (AI), far less is known about the effectiveness of them in recruitment and selection research. Design/methodology/approach This paper tests the impact of AI-based initial screening and interview on intentions to apply. We also examine the moderating role of individual difference (i.e., reliability on technology) in the relationship. Findings Using policy-capturing with undergraduate students at a large university in South Korea, this study showed that AI-based interview has a negative effect on intentions to apply, where AI-based initial screening has no effect. These results suggest that applicants may have a negative feeling of AI-based interview, but they may not AI-based initial screening. In other words, AI-based interview can reduce application rates, but AI-based screening not. Results also indicated that the relationship between AI-based initial screening and intentions to apply is moderated by the level of applicant's reliability on technology. Specifically, respondents with high levels of reliability are more likely than those with low levels of reliability to apply for firms using AI-based initial screening. However, the moderating role of reliability was not significant in the relationship between the AI interview and the applying intention. Employing uncertainty reduction theory, this study indicated that the relationship between AI-based selection tools and intentions to apply is dynamic, suggesting that organizations should carefully manage their AI-based selection techniques throughout the recruitment and selection process.

Evaluating the Current State of ChatGPT and Its Disruptive Potential: An Empirical Study of Korean Users

  • Jiwoong Choi;Jinsoo Park;Jihae Suh
    • Asia pacific journal of information systems
    • /
    • v.33 no.4
    • /
    • pp.1058-1092
    • /
    • 2023
  • This study investigates the perception and adoption of ChatGPT (a large language model (LLM)-based chatbot created by OpenAI) among Korean users and assesses its potential as the next disruptive innovation. Drawing on previous literature, the study proposes perceived intelligence and perceived anthropomorphism as key differentiating factors of ChatGPT from earlier AI-based chatbots. Four individual motives (i.e., perceived usefulness, ease of use, enjoyment, and trust) and two societal motives (social influence and AI anxiety) were identified as antecedents of ChatGPT acceptance. A survey was conducted within two Korean online communities related to artificial intelligence, the findings of which confirm that ChatGPT is being used for both utilitarian and hedonic purposes, and that perceived usefulness and enjoyment positively impact the behavioral intention to adopt the chatbot. However, unlike prior expectations, perceived ease-of-use was not shown to exert significant influence on behavioral intention. Moreover, trust was not found to be a significant influencer to behavioral intention, and while social influence played a substantial role in adoption intention and perceived usefulness, AI anxiety did not show a significant effect. The study confirmed that perceived intelligence and perceived anthropomorphism are constructs that influence the individual factors that influence behavioral intention to adopt and highlights the need for future research to deconstruct and explore the factors that make ChatGPT "enjoyable" and "easy to use" and to better understand its potential as a disruptive technology. Service developers and LLM providers are advised to design user-centric applications, focus on user-friendliness, acknowledge that building trust takes time, and recognize the role of social influence in adoption.

Challenges of diet planning for children using artificial intelligence

  • Changhun, Lee;Soohyeok, Kim;Jayun, Kim;Chiehyeon, Lim;Minyoung, Jung
    • Nutrition Research and Practice
    • /
    • v.16 no.6
    • /
    • pp.801-812
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Diet planning in childcare centers is difficult because of the required knowledge of nutrition and development as well as the high design complexity associated with large numbers of food items. Artificial intelligence (AI) is expected to provide diet-planning solutions via automatic and effective application of professional knowledge, addressing the complexity of optimal diet design. This study presents the results of the evaluation of the utility of AI-generated diets for children and provides related implications. MATERIALS/METHODS: We developed 2 AI solutions for children aged 3-5 yrs using a generative adversarial network (GAN) model and a reinforcement learning (RL) framework. After training these solutions to produce daily diet plans, experts evaluated the human- and AI-generated diets in 2 steps. RESULTS: In the evaluation of adequacy of nutrition, where experts were provided only with nutrient information and no food names, the proportion of strong positive responses to RL-generated diets was higher than that of the human- and GAN-generated diets (P < 0.001). In contrast, in terms of diet composition, the experts' responses to human-designed diets were more positive when experts were provided with food name information (i.e., composition information). CONCLUSIONS: To the best of our knowledge, this is the first study to demonstrate the development and evaluation of AI to support dietary planning for children. This study demonstrates the possibility of developing AI-assisted diet planning methods for children and highlights the importance of composition compliance in diet planning. Further integrative cooperation in the fields of nutrition, engineering, and medicine is needed to improve the suitability of our proposed AI solutions and benefit children's well-being by providing high-quality diet planning in terms of both compositional and nutritional criteria.

A Study on Construction Method of AI based Situation Analysis Dataset for Battlefield Awareness

  • Yukyung Shin;Soyeon Jin;Jongchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.37-53
    • /
    • 2023
  • The AI based intelligent command and control system can automatically analyzes the properties of intricate battlefield information and tactical data. In addition, commanders can receive situation analysis results and battlefield awareness through the system to support decision-making. It is necessary to build a battlefield situation analysis dataset similar to the actual battlefield situation for learning AI in order to provide decision-making support to commanders. In this paper, we explain the next step of the dataset construction method of the existing previous research, 'A Virtual Battlefield Situation Dataset Generation for Battlefield Analysis based on Artificial Intelligence'. We proposed a method to build the dataset required for the final battlefield situation analysis results to support the commander's decision-making and recognize the future battlefield. We developed 'Dataset Generator SW', a software tool to build a learning dataset for battlefield situation analysis, and used the SW tool to perform data labeling. The constructed dataset was input into the Siamese Network model. Then, the output results were inferred to verify the dataset construction method using a post-processing ranking algorithm.

Indoor Semantic Data Dection and Indoor Spatial Data Update through Artificial Intelligence and Augmented Reality Technology

  • Kwon, Sun
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1170-1178
    • /
    • 2022
  • Indoor POI data, an essential component of indoor spatial data, has attribute information of a specific place in the room and is the most critical information necessary for the user. Currently, indoor POI data is manually updated by direct investigation, which is expensive and time-consuming. Recently, research on updating POI using the attribute information of indoor photographs has been advanced to overcome these problems. However, the range of use, such as using only photographs with text information, is limited. Therefore, in this study, and to improvement this, I proposed a new method to update indoor POI data using a smartphone camera. In the proposed method, the POI name is obtained by classifying the indoor scene's photograph into artificial intelligence technology CNN and matching the location criteria to indoor spatial data through AR technology. As a result of creating and experimenting with a prototype application to evaluate the proposed method, it was possible to update POI data that reflects the real world with high accuracy. Therefore, the results of this study can be used as a complement or substitute for the existing methodologies that have been advanced mainly by direct research.

  • PDF

Classification Model and Crime Occurrence City Forecasting Based on Random Forest Algorithm

  • KANG, Sea-Am;CHOI, Jeong-Hyun;KANG, Min-soo
    • Korean Journal of Artificial Intelligence
    • /
    • v.10 no.1
    • /
    • pp.21-25
    • /
    • 2022
  • Korea has relatively less crime than other countries. However, the crime rate is steadily increasing. Many people think the crime rate is decreasing, but the crime arrest rate has increased. The goal is to check the relationship between CCTV and the crime rate as a way to lower the crime rate, and to identify the correlation between areas without CCTV and areas without CCTV. If you see a crime that can happen at any time, I think you should use a random forest algorithm. We also plan to use machine learning random forest algorithms to reduce the risk of overfitting, reduce the required training time, and verify high-level accuracy. The goal is to identify the relationship between CCTV and crime occurrence by creating a crime prevention algorithm using machine learning random forest techniques. Assuming that no crime occurs without CCTV, it compares the crime rate between the areas where the most crimes occur and the areas where there are no crimes, and predicts areas where there are many crimes. The impact of CCTV on crime prevention and arrest can be interpreted as a comprehensive effect in part, and the purpose isto identify areas and frequency of frequent crimes by comparing the time and time without CCTV.

Artificial Intelligence-Based Identification of Normal Chest Radiographs: A Simulation Study in a Multicenter Health Screening Cohort

  • Hyunsuk Yoo;Eun Young Kim;Hyungjin Kim;Ye Ra Choi;Moon Young Kim;Sung Ho Hwang;Young Joong Kim;Young Jun Cho;Kwang Nam Jin
    • Korean Journal of Radiology
    • /
    • v.23 no.10
    • /
    • pp.1009-1018
    • /
    • 2022
  • Objective: This study aimed to investigate the feasibility of using artificial intelligence (AI) to identify normal chest radiography (CXR) from the worklist of radiologists in a health-screening environment. Materials and Methods: This retrospective simulation study was conducted using the CXRs of 5887 adults (mean age ± standard deviation, 55.4 ± 11.8 years; male, 4329) from three health screening centers in South Korea using a commercial AI (Lunit INSIGHT CXR3, version 3.5.8.8). Three board-certified thoracic radiologists reviewed CXR images for referable thoracic abnormalities and grouped the images into those with visible referable abnormalities (identified as abnormal by at least one reader) and those with clearly visible referable abnormalities (identified as abnormal by at least two readers). With AI-based simulated exclusion of normal CXR images, the percentages of normal images sorted and abnormal images erroneously removed were analyzed. Additionally, in a random subsample of 480 patients, the ability to identify visible referable abnormalities was compared among AI-unassisted reading (i.e., all images read by human readers without AI), AI-assisted reading (i.e., all images read by human readers with AI assistance as concurrent readers), and reading with AI triage (i.e., human reading of only those rendered abnormal by AI). Results: Of 5887 CXR images, 405 (6.9%) and 227 (3.9%) contained visible and clearly visible abnormalities, respectively. With AI-based triage, 42.9% (2354/5482) of normal CXR images were removed at the cost of erroneous removal of 3.5% (14/405) and 1.8% (4/227) of CXR images with visible and clearly visible abnormalities, respectively. In the diagnostic performance study, AI triage removed 41.6% (188/452) of normal images from the worklist without missing visible abnormalities and increased the specificity for some readers without decreasing sensitivity. Conclusion: This study suggests the feasibility of sorting and removing normal CXRs using AI with a tailored cut-off to increase efficiency and reduce the workload of radiologists.