• 제목/요약/키워드: A.C. impedance

검색결과 713건 처리시간 0.024초

유기 발광 다이오드(ITO/$AIq_3$/AI)의 온도 변화에 따른 유전 특성 (Dielectric Properties Depending on Temperature in Organic Light-emitting Diodes(ITO/$AIq_3$/AI))

  • 오용철;이동규;조춘남;안준호;정동희;이성일;김귀열;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 학술대회 및 기술세미나 논문집 디스플레이 광소자
    • /
    • pp.74-75
    • /
    • 2006
  • We have investigated dielectric properties depending on temperature in organic light-emitting diodes using 8-hydroxyquinoline aluminum ($Alq_3$) as an electron transport and emissive material. We analyzed the dielectric properties of organic light-emitting diodes using characteristics of impedance. he Impedance characteristics was measured complex impedance Z and phase $\theta$ in the temperature range of 10 K to 300 K. We obtained complex electrical conductivity, dielectric constant and loss tangent ($tan{\delta}$) of the device at room temperature. From these analyses, we are able to interpret a conduction mechanism and dielectric properties contributed by an interfacial and orientational polarization.

  • PDF

Stainless강(鋼) 전열관(傳熱管)에 있어서 과전류(過電流) 신호강도(信號强度)와 결함(缺陷)크기와의 관계에 관한 연구(硏究) (A study on the Relationship between the Size of Defect and the Intensity of Eddy Current Signal in Heat Exchanging Tube made of STS 304.)

  • 한응교;엄호섭;박익근;최명식
    • 비파괴검사학회지
    • /
    • 제6권2호
    • /
    • pp.7-16
    • /
    • 1987
  • Eddy Current Examination is expected as the effective technique for nondestructive inspection of steam generator and various kinds of heat exchanging tubes made of STS - 304. In Case of E. C. T, a study on the various factors which have an effect on coil impedance is very important to the sensitivity of defect detection and the ratio of signal to noise. Therefore, this study analyzed coil impedance by means of the variational principle, the minimized theory of energy functional and the application of Finite Element Method. Really by using E. C. T, the relationship between the size of defects and the intensity of Eddy Current Signals can be obtained. Signal intensity becomes maximum at certain frequency. This frequency is affected by the characteristics and the position of signal sources.

  • PDF

마이크로 드로플릿 셀 기법을 이용한 예민화 된 304 스테인리스강의 미세전기화학 특성 (Micro-electrochemical Characteristics of Sensitized 304 Stainless steel Using Micro-droplet cell Techniques)

  • 김규섭;이재봉
    • Corrosion Science and Technology
    • /
    • 제9권6호
    • /
    • pp.300-309
    • /
    • 2010
  • The influences of sensitization on localized corrosion resistance of 304 stainless steel, were investigated, using micro-dropletcell techniques. Micro-droplet cell allows one to align the micro-electrode to the desired spot of the working electrode and measure directly local current with the potentiodynamic polarization, linear polarization and a.c. impedance. Micro-electrochemical tests were carried out inside of the grain and on grain boundaries separately. It was found that sensitization decreased the pitting potential, increasing corrosion current density around grain boundaries. Galvanic current density was also measured between grain and grain boundaries.

CHARACTERISTICS OF PLATED GOLD LAYER ON ANSI 304 STAINLESS STEEL ACCORDING TO THE VARIATION OF PRETREATMENTS AND ELECTROLYSIS CONDITIONS

  • Lee, Dong-hun;Lee, Jae-Bong
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.224-234
    • /
    • 1999
  • An attempt was made to characterize the relationship between pretreatment processes, electrolysis conditions and behaviors of the plated gold layer. In order to investigate the effect of pretreatment processes on plating, rest potential measurements of various pretreated stainless steels and a.c.-impedance spectroscopy tests were carried out in the strike plating solution. Characteristics of plated gold layers and adhesions between plated gold layers and stainless steel substrates were examined by scratching tests and micro-Vickers hardness tests. The result shows that the strike plating enhanced the adhesion of interface, the cathodic electro-activation pretreatment process improving both corrosion resistance and adhesion strength. The preferred orientations of plated gold layers were examined by the X-ray diffraction technique. As the current density increases, [111] preferred orientation of plated gold layers was found to become well developed.

  • PDF

Design and analysis of highly selective ultrawide stopband lowpass filter using lumped and distributed equivalent circuit models

  • Pankaj Singh Tomar;Manoj Singh Parihar
    • ETRI Journal
    • /
    • 제46권4호
    • /
    • pp.716-726
    • /
    • 2024
  • An ultrawide stopband lowpass filter is reported using three stepped impedance resonators with high selectivity. The filter extends the stopband frequency range and attenuation, and two quarter-wave open stubs and three circular ground slots are introduced. The lumped and distributed equivalent models are derived and analyzed. The corresponding results are validated experimentally in a fabricated prototype. The prototype lowpass filter has a 3 dB cutoff frequency (fc) of 2.9 GHz, and the stopband is extended up to 35 GHz (12.07fc), with an attenuation level better than 20 dB throughout. The passband-to-stopband transition (3 dB-20 dB) bandwidth is 0.18 GHz, and the roll-off factor is 135 dB/GHz at 30 dB. The insertion loss is 0.3 dB at 1.6 GHz. The normalized circuit size of the proposed filter with respect to the guided wavelength is 0.04.

Force tracking position-based impedance control of robot manipulator with unknown environment stiffness

  • Jung, Seul;Hsia, T.C.;Ahn, D.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.8-11
    • /
    • 1996
  • In impedance control for contact force tracking it is well known that the reference trajectory of the robot is calculated from known environment stiffness. The accuracy of estimating the environment stiffness determines the performance of the resulting force tracking. Here we present a simple technique, called the trajectory modification technique(TMT), of determining the reference trajectory under the condition that the environment stiffness is unknown. Computer simulation studies have shown that force tracking using the proposed technique is excellent for unknown environment with time varying stiffness.

  • PDF

Use of Modern Non­destructive Techniques in High Temperature Degradation of Material and Coatings

  • Lee, C.K.;Sohn, Y.H.
    • International Journal of Korean Welding Society
    • /
    • 제3권2호
    • /
    • pp.29-39
    • /
    • 2003
  • The durability and reliability of thermal barrier coatings (TBCs) play an important role in the service reliability, availability and maintainability (RAM) of hot­section components in advanced turbine engines for aero and utility applications. Photostimulated luminescence spectroscopy (PSLS) and electrochemical impedance spectroscopy (EIS) are being concurrently developed as complimentary non­destructive evaluation (NDE) techniques for quality control and life­remain assessment of TBCs. This paper overviews the governing principles and applications of the luminescence and the impedance examined in the light of residual stress, phase constituents and resistance (or capacitance) in TBC constituents including the thermally grown oxide (TGO) scale. Results from NDE by PSLS and EIS are discussed and related to the microstructural development during high temperature thermal cycling, examined by using a variety of microscopic techniques including focused ion beam (FIB) in­situ lift­out (INLO), transmission and scanning transmission electron microscopy (TEM and STEM).

  • PDF

Qualification for Impedance-based Rain Detectors

  • Lee, Sang-Wook;Choi, Byung Il;Kim, Jong Chul;Woo, Sang-Bong;Kim, Yong-Gyoo
    • 센서학회지
    • /
    • 제26권3호
    • /
    • pp.149-154
    • /
    • 2017
  • Detection of rain is one of the essential weather factors that are monitored by automatic weather stations in Korea. In this work, we studied the operation standards required for impedance-based rain detectors in terms of surface temperature and sensitivity, in an effort to establish a qualification procedure for rain detectors. The surface temperature of rain detectors was measured at varying air temperatures from $-30^{\circ}C$ to $20^{\circ}C$, considering the hypothetical presence and absence of rain/snow. In addition, the sensitivity of rain detectors was studied generating artificial raindrops of regular size. The sensitivity was evaluated in terms of the critical number of droplets that triggers the activation of the rain detector. We found that the sensitivity is affected by stationary, horizontal, and vertical droplet deposition methods. The critical number of droplets for the stationary deposition is higher than that for both horizontal and vertical depositions, which provides the maximum limit of droplets required to activate the detector. Based on our experiments considering surface temperature measurements and sensitivity tests, we suggest a revised version of surface temperature and sensitivity requirements for the qualification of impedance-based rain detectors.

The Effect of Annealing Heat Treatment by Anodic Polarization Impedance Experiments for Cu-10%Ni Alloy

  • Lee, Sung-Yul;Moon, Kyung-Man;Jeong, Jae-Hyun;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권5호
    • /
    • pp.536-541
    • /
    • 2015
  • Copper has been used extensively as an electric wire or as a base material in various types of machineries owing to its good electrical and thermal conductivity and good fabricating property, as well as its good corrosion resistance compared to iron. Furthermore, the copper-nickel alloy has significant corrosion resistance in severely corrosive environments. Although, cupro-nickel alloy shows better corrosion resistance than the brass and bronze series, this alloy also corroded in severely corrosive environments, including aggressive chloride ions, dissolved oxygen, and condition of fast flowing seawater. In this study, and annealing treatment at various annealing temperatures was carried out on the cupro-nickel (Cu-10%Ni) alloy, and the effects of annealing were investigated using electrochemical methods, such as measuring the polarization and impedance behaviors under flowing seawater conditions. The corrosion resistance increased by annealing compared to non heat treatment in the absence of flowing seawater. In particular, the sample annealed at $200^{\circ}C$ exhibited the best corrosion resistance. The impedance in the presence of flowing seawater showed higher values than in the absence of flowing seawater. Furthermore, the highest impedances was observed in the sample annealed at $800^{\circ}C$, irrespective of the present of flowing seawater. Consequently, the corrosion resistance of cupro-nickel (Cu-10%Ni) alloy in a severely corrosive environment can be improved somewhat by annealing.

E-band low-noise amplifier MMIC with impedance-controllable filter using SiGe 130-nm BiCMOS technology

  • Chang, Woojin;Lee, Jong-Min;Kim, Seong-Il;Lee, Sang-Heung;Kang, Dong Min
    • ETRI Journal
    • /
    • 제42권5호
    • /
    • pp.781-789
    • /
    • 2020
  • In this study, an E-band low-noise amplifier (LNA) monolithic microwave integrated circuit (MMIC) has been designed using silicon-germanium 130-nm bipolar complementary metal-oxide-semiconductor technology to suppress unwanted signal gain outside operating frequencies and improve the signal gain and noise figures at operating frequencies. The proposed impedance-controllable filter has series (Rs) and parallel (Rp) resistors instead of a conventional inductor-capacitor (L-C) filter without any resistor in an interstage matching circuit. Using the impedance-controllable filter instead of the conventional L-C filter, the unwanted high signal gains of the designed E-band LNA at frequencies of 54 GHz to 57 GHz are suppressed by 8 dB to 12 dB from 24 dB to 26 dB to 12 dB to 18 dB. The small-signal gain S21 at the operating frequencies of 70 GHz to 95 GHz are only decreased by 1.4 dB to 2.4 dB from 21.6 dB to 25.4 dB to 19.2 dB to 24.0 dB. The fabricated E-band LNA MMIC with the proposed filter has a measured S21 of 16 dB to 21 dB, input matching (S11) of -14 dB to -5 dB, and output matching (S22) of -19 dB to -4 dB at E-band operating frequencies of 70 GHz to 95 GHz.