• Title/Summary/Keyword: A.C impedance spectroscopy

Search Result 165, Processing Time 0.035 seconds

Role of Some Benzohydrazide Derivatives as Corrosion Inhibitors for Carbon Steel in HCl Solution

  • Fouda, A.S.;Mohamed, M.T.;Soltan, M.R.
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.61-70
    • /
    • 2013
  • Corrosion inhibition of carbon steel in 2M HCl by some benzohydrazide derivatives (I-III) was studied using weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques at $30^{\circ}C$. Polarization studies showed that all the investigated compounds are of mixed type inhibitors. Temperature studies revealed a decrease in efficiency with rise in temperature and corrosion activation energies increased in the presence of the hydrazide derivatives, probably implying that physical adsorption of cationic species may be responsible for the observed inhibition behavior. Electrochemical impedance studies showed that the presence of benzohydrazide derivatives decreases the double layer capacitance and increases the charge transfer resistance. The adsorption of these compounds on carbon steel surface was found to obey Temkin's adsorption isotherm. Synergistic effects increased the inhibition efficiency in the presence of halide additives namely KI and KBr. An inhibition mechanism was proposed in terms of strongly adsorption of inhibitor molecules on carbon steel surface.

Effect of the A-site Deficieny of ABO3 type (La0.75Sr0.25)1-xFeO3-δ Used as Cathode Materials for SOFC on the Electrode Properties (고체산화물 연료전지의 공기극용 ABO3구조의 (La0.75Sr0.25)1-xFeO3-δ의 A-site변화에 따른 전극 특성 연구)

  • Park, Ju-Hyun;Lee, Seung-Bok;So, Hui-Jeong;Lim, Tak-Hyoung;Yoon, Soon-Gil;Shin, Dong-Ryul;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.89-94
    • /
    • 2008
  • We synthesized and investigated $(La_{0.75}Sr_{0.25})_{1-x}FeO_{3-\delta}$ perovskite oxides having different stoichiomety (x = 0, 0.02, 0.04, 0.06, 0.08) as cathode materials. SEM images and XRD patterns reveal that the synthesized powder has uniform size distribution and high degree of crystallinity. The electrochemical performances of the synthesized powders were investigated by AC impedance spectroscopy. Both the electric conductivity and the electrochemical performance showed the highest properties at the stoichiometry x = 0.02. Finally, we concluded that the variation of A-site deficiency results in the variation of the amount of oxygen vacancy and micro structure, which leads to the variation of electric conductivity and polarization resistance.

A Comparative Study on Electrochemical Impedance Analysis of Solid Carbon Fuels in Direct Carbon Fuel Cell (직접탄소 연료전지에서 고체 탄소 연료에 따른 전기화학 임피던스 비교 연구)

  • Cho, Jaemin;Eom, Seongyong;Lee, Gwangseob;Ahn, Seongyool;Kim, Duckjool;Choi, Gyungmin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.620-628
    • /
    • 2014
  • Direct Carbon Fuel Cell(DCFC) is one of new power generation that the chemical energy of solid carbon can be converted into electrical energy directly. At the high temperature, the electrochemical reaction of the carbon takes place and the carbon reacts with oxygen to produce carbon dioxide as followed overall reaction ($C+O_2{\rightarrow}CO_2$). However, in case of using the raw coals as a fuel of DCFC, the volatile matter containing carbon, hydrogen, and oxygen produces at operating temperature. In this study, the electrochemical reaction of Adaro coal was compared with Graphite. This work focused on the electrochemical reaction of two kinds of solid carbon by Electrochemical Impedance Spectroscopy(EIS). The EIS results were estimated by equivalent circuit analysis. The constant phase element(CPE) was applied in Randle circuit to explain an electrode and fuel interface. The correlation between the fuel characteristic and electrochemical results was discussed by elements of equivalent circuit of each fuel.

Electrical Conduction in Y2O3-doped SrZrO3-metal Electrode System (Y2O3가 도핑된 SrZrO3-금속전극계의 전기전도 특성)

  • Baek, Hyun-Deok;Lee, Poong-Hun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.367-376
    • /
    • 2002
  • Electrical conduction in $SrZr_{1-x}Y_xO_{3-\delta}$((x=0.05, 0.10)-metal electrode system was investigated by impedance spectroscopy and two-probe d.c. conductivity measurement. Electrode conductivity in anodic direction varies with $P_W^{1/2}$( and that in cathodic direction with $P_{O2}^{1/4}$ in oxidizing atmosphere. In hydrogen atmosphere, the addition of water vapor increased the electrode conductivity both in anodic and cathodic direction. Increasing dopant concentration from 5 to 10% showed a more than four times increase in anodic conduction as well as bulk conduction of the solid electrolyte. This observation implies that unfilled oxygen vacancy concentration increases rapidly as the dopant content increases in humid atmosphere. The activation energy of cathodic conduction in Pt and Ag electrode was nearly same below $800^{\circ}C$ which means the rate of cathodic reaction is determined by the reaction in the electrolyte surface rather than on the metal electrodes.

Characterization of RF Sputter-deposited Sodium Phosphorous Oxynitride Thin Films as a Solid-state Sodium-ion Conductor

  • Chun, Sang-Eun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.237-243
    • /
    • 2017
  • We demonstrated the thin film deposition of sodium phosphorous oxynitride (NaPON) via RF magnetron sputtering of $Na_3PO_4$, as a solid-state Na-ion conductor similar to lithium phosphorous oxynitride (LiPON), which is a commonly used solid electrolyte. The deposited NaPON thin film was characterized by scanning electron microscopy, X-ray diffractometry, and electrochemical impedance spectroscopy, to investigate the feasibility of the solid-state electrolyte in several different cell configurations. The key properties of a solidstate electrolyte, i.e., ionic conductivity and activation energy, were estimated from the complex non-linear least square fitting of the measured impedance spectra at various temperatures in the range of $27-90^{\circ}C$. The ionic conductivity of the NaPON film was measured to be $8.73{\times}10^{-6}S\;cm^{-1}$ at $27^{\circ}C$, which was comparable to that of the LiPON film. The activation energy was estimated to be 0.164 eV, which was lower than that of the LiPON film (0.672 eV). The obtained values encourage the use of a NaPON thin film in the future as a reasonable solid-state electrolyte.

Analysis on the Fuel Cell Performance by the Impedance Method (임피던스법을 적용한 연료전지의 성능평가)

  • Kim, Gwi-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.918-923
    • /
    • 2007
  • Fuel cell is a modular, high efficient and environmentally energy conversion device, it has become a promising option to replace the conventional fossil fuel based electric power plants. The high temperature fuel cell has conspicuous feature and high potential in being used as an energy converter of various fuel to electricity and heat. Corrosions in molten electrolytes and the electric conductivity across the oxide scale have crucial characteristics. When molten salts are involved, high temperature corrosions become severe. In this sense, corrosions of alloys with molten carbonates have the most severe material problems. Systematic investigation on corrosion behavior of Fe/21Cr/Ti or Al alloy has been done in (62+38)mol% (Li+K)$CO_3$ melt at $650^{\circ}C$ using the electrochemical impedance spectroscopy method. It was found that the corrosion current of these Fe-based alloys decreased with increasing Al or Ti. And Al addition improved the corrosion resistance of this type of specimen and more improvement of corrosion resistance was observed at the specimen added with Al.

Charge-discharge Properties of $LiMnO_2$ as a Function of Heat Treatment Temperature for Lithium Polymer Batteries (리튬 폴리머 전지용 $LiMnO_2$의 열처리 온도에 따른 충방전 특성)

  • Cho, Young-Jai;Wee, Sung-Dong;Kim, Sang-Ki;Gu, Hal-Bon;Gu, Jong-Uk;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.23-26
    • /
    • 2001
  • The properties of $LiMnO_2$ was studied as a cathode active material for lithium polymer batteries. $LiMnO_2$ cathode active materials were synthesized by the reaction of $LiOH{\cdot}H_2O$ and $Mn_2O_3$ at various temperature under argon atmosphere. The powders were characterized by the X -ray diffraction. For lithium polymer battery applications, the $LiMnO_2$ cell was characterized electrochemically by charge-discharge experiments and a.c. impedance spectroscopy. And the relationship between the characteristics of powders and electrochemical properties was studied in this research. A maximum discharge capacity of 160~170 mAh/g for o-$LiMnO_2$ cell was achieved. The capacity of o-$LiMnO_2$ electrode demonstrated better than of the spinel $LiMnO_2$ by solid-state reaction.

  • PDF

Electrochemical Properties of $LiMnO_2$ Cathode as a Function of Addition of Electric Active Materials for Lithium Polymer Batteries (리튬 폴리머 전지용 $LiMnO_2$정극의 도전재에 따른 전기 화학적 특성)

  • 조영재;김종욱;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.474-477
    • /
    • 2001
  • The properties of LiMnO$_2$ was studied as a cathode active material for lithium polymer batteries. LiMnO$_2$ cathode active materials were synthesized by the reaction of LiOH . $H_2O$ and Mn$_2$O$_3$at various temperature under argon atmosphere. For lithium polymer battery applications, the LiMnO$_2$cell was characterized electrochemically by charge-discharge experiments and a.c. impedance spectroscopy. And the relationship between the characteristics of powders and electrochemical properties was studied in this research. A maximum discharge capacity of 160-170 mAh/g for ο-LiMnO$_2$ cell was achieved. Used that SP270 as electric active material in LiMnO$_2$, it is excellent than property of electric active material used Acetylene black or KS6 at charge/discharge capacity.

  • PDF

Electrochemical properties of heat-treated multi-walled carbon nanotubes (열처리된 탄소나노튜브 상대전극의 전기화학적 특성 연구)

  • Lee, S.K.;Moon, J.H.;Hwang, S.H.;Kim, G.C.;Lee, D.Y.;Kim, D.H.;Jeon, M.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.67-72
    • /
    • 2008
  • We have studied the effect of heat treatment of multi-walled carbon nanotubes (MWNTs) as a counter electrode on the electro-chemical properties of dye-snsitized solar cells. MWNTs on the p-type Si substrate were synthesized by thermal chemical vapor deposition (CVD) using Fe catalysts. We prepared the two types of MWNTs samples with the different diameters. The rapid thermal annealing (RTA) treatment for the MWNTs was carried out at the growth temperature ($900^{\circ}C$) for 1 minute with $N_2$ gas atmosphere. The structural, electrical and electrochemical properties of MWNTs were investigated by field-emission scanning electron microscopy (FE-SEM), Raman spectroscopy, 2-point probe station and electrochemical impedance spectroscopy (EIS). The I(D)/I(G) ratio of heat-treated MWNTs in Raman spectra was considerably decreased. It was also found that the heat-treated MWNTs showed better redox reaction of iodide at the interface between MWNTs surface and electrolyte than that of as-grown MWNTs. The redox resistance value of heat-treated electrodes was measured to be much lower than that of as-grown electrode at the interface. As a result, the counter electrode using the heat-treated MWNTs showed better electrochemical properties.

Corrosion Behaviors of Dental Implant Alloy after Micro-sized Surface Modification in Electrolytes Containing Mn Ion

  • Kang, Jung-In;Son, Mee-Kyoung;Choe, Han-Cheol
    • Journal of Korean Dental Science
    • /
    • v.11 no.2
    • /
    • pp.71-81
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the corrosion behaviors of dental implant alloy after microsized surface modification in electrolytes containing Mn ion. Materials and Methods: $Mn-TiO_2$ coatings were prepared on the Ti-6Al-4V alloy for dental implants using a plasma electrolytic oxidation (PEO) method carried out in electrolytes containing different concentrations of Mn, namely, 0%, 5%, and 20%. Potentiodynamic method was employed to examine the corrosion behaviors, and the alternatingcurrent (AC) impedance behaviors were examined in 0.9% NaCl solution at $36.5^{\circ}C{\pm}1.0^{\circ}C$ using a potentiostat and an electrochemical impedance spectroscope. The potentiodynamic test was performed with a scanning rate of $1.667mV\;s^{-1}$ from -1,500 to 2,000 mV. A frequency range of $10^{-1}$ to $10^5Hz$ was used for the electrochemical impedance spectroscopy (EIS) measurements. The amplitude of the AC signal was 10 mV, and 5 points per decade were used. The morphology and structure of the samples were examined using field-emission scanning electron microscopy and thin-film X-ray diffraction. The elemental analysis was performed using energy-dispersive X-ray spectroscopy. Result: The PEO-treated surface exhibited an irregular pore shape, and the pore size and number of the pores increased with an increase in the Mn concentration. For the PEO-treated surface, a higher corrosion current density ($I_{corr}$) and a lower corrosion potential ($E_{corr}$) was obtained as compared to that of the bulk surface. However, the current density in the passive regions ($I_{pass}$) was found to be more stable for the PEO-treated surface than that of the bulk surface. As the Mn concentration increased, the capacitance values of the outer porous layer and the barrier layer decreased, and the polarization resistance of the barrier layers increased. In the case of the Mn/Ca-P coatings, the corroded surface was found to be covered with corrosion products. Conclusion: It is confirmed that corrosion resistance and polarization resistance of PEO-treated alloy increased as Mn content increased, and PEO-treated surface showed lower current density in the passive region.