• Title/Summary/Keyword: A. solani.

Search Result 434, Processing Time 0.02 seconds

Antifungal Activity of Bacillus sp. AM-651 Against Phytophthora capsici (고추역병 유발병원균 Phytophthora capsici에 대한 Bacillus sp. AM-651의 항진균활성)

  • Lee, Jung-Bok;Shin, Jeong-Hak;Jang, Jong-Ok;Shin, Kee-Sun;Choi, Chung-Sik;Kim, Kun-Woo;Jo, Min-Sub;Jeon, Chun-Pyo;Kim, Yun-Hoi;Kwon, Gi-Seok
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.3
    • /
    • pp.227-232
    • /
    • 2008
  • Biological antagonists of Phytophthora capsici were isolated from soil in Gyeongbuk, Korea. Among the isolated bacteria, a Bacillus sp. was identified from l6S rDNA sequence analysis and named Bacillus sp. AM-651. Bacillus sp. AM-65l strain which can strongly a antifungal activity against Phytophthora capsici. Culture conditions for the maximum production of the antagonistic substance were optimized. The production of antibiotic were high on modified Davis mineral medium pH 7 at $30^{\circ}C$. The medium for highest production of the agonistic substance optimized. It is composed the best activity on glucose, $(NH_4)_2SO_4$ and $K_2HPO_4$ at 0.5%, 0.1%, and 0.7%, respectively. By time course of culture solution selected Bacillus sp. AM-65l, the culture solution after 48hrs had strongly growth inhibition rate against P. capsici. And culture solution of Bacillus sp. AM-651 was stable within a pH range $5{\sim}11$ and temperature range $4{\sim}70^{\circ}C$. Bacillus sp. AM-651 cultured broth shown fungal growth inhibitory activity against B. sorokiniana, B. cinerea, R. solani avove and beyond P. capsici and comparatively showed a high activity against C. gloeosporioides, B. dothidea, B. cinerea and F. graminearum by agar diffusion method.

Enhancement of Seed Dehiscence by Seed Treatment with Talaromyces flavus GG01 and GG04 in Ginseng (Panax ginseng)

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Hong, Sung-Jun;Park, Jong-Ho;Han, Eun-Jung;Kim, Seok-Cheol
    • The Plant Pathology Journal
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Seed dehiscence of ginseng (Panax ginseng C. A. Mayer) is affected by moisture, temperature, storage conditions and microbes. Several microbes were isolated from completely dehisced seed coat of ginseng cultivars, Chunpoong and Younpoong at Gumsan, Korea. We investigated the potential of five Talaromyces flavus isolates from the dehiscence of ginseng seed in four traditional stratification facilities. The isolates showed antagonistic activities against fungal plant pathogens, such as Cylindrocarpon destructans, Fusarium oxysporum, Rhizoctonia solani, Sclerotinia nivalis, Botrytis cinerea, and Phytophthora capsici. The dehiscence ratios of ginseng seed increased more than 33% by treatment of T. flavus GG01, GG02, GG04, GG12, and GG23 in comparison to control (28%). Among the treatments, the reformulating treatment of T. flavus isolates GG01 and GG04 showed the highest of stratification ratio of ginseng seed. After 16 weeks, the reformulating treatment of T. flavus isolates GG01 and GG04 significantly enhanced dehiscence of ginseng seed by about 81% compared to the untreated control. The candidate's treatment of T. flavus GG01 and GG04 showed the highest decreasing rate of 93% in seed coat hardness for 112 days in dehiscence period. The results suggested that the pre-inoculation of T. flavus GG01 and GG04 found to be very effective applications in improving dehiscence and germination of ginseng seed.

In Vivo Antifungal Effects of Coptis japonica Root-Derived Isoquinoline Alkaloids Against Phytopathogenic Fungi

  • LEE CHI-HOON;LEE HOI-JOUNG;JEON JU-HYUN;LEE HOI-SEON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1402-1407
    • /
    • 2005
  • The fungicidal activities of Coptis japonica (Makino) extracts and their active principles were determined against Botrytis cineria, Erysiphe graminis, Phytophthora infestans, Puccinia recondita, Pyricularia grisea, and Rhizoctonia solani using a whole plant method in vivo, and compared with natural fungicides. The responses varied according to the plant pathogen tested. At 2,000 mg/l, the chloroform and butanol fractions obtained from methanolic extracts of C. japonica exhibited strong/moderate fungicidal activities against B. cinerea, E. graminis, P. recondita, and Py. grisea. Two active constituents from the chloroform fractions and one active constituent from the butanol fractions were characterized as isoquinoline alkaloids, berberine chloride, palmatine iodide, and coptisine chloride, respectively, using spectral analysis. Berberine chloride had an apparent $LC_{50}$ value of approximately 190, 80, and 50 mg/l against B. cinerea, E. graminis, and P. recondita, respectively; coptisine chloride had an $LC_{50}$ value of 210,20, 180, and 290 mg/l against B. cinerea, E. graminis, P. recondita, and Py. grisea, respectively; and palmatine iodide had an $LC_{50}$ value of 160 mg/l against Py. grisea. The isoquinoline alkaloids were also found to be more potent than the natural fungicides, curcumin and emodin. Therefore, these compounds isolated from C. japonica may be useful leads for the development of new types of natural fungicides for controlling B. cinerea, E. graminis, P. recondita, and Py. grisea in crops.

Seed Mycofloras of Soybeans(Glycine max) and their Pathogenic Importance (콩종자(種子)에서 검출(檢出)된 Mycoflora와 그 병원성(病原性))

  • Park, Jong Seong;Yu, Seung Hun;In, Mu Seong;No, Tae Hong
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.263-268
    • /
    • 1983
  • In a survey of seed-borne mycofloras of Glycine max, 21 species have been isolated. Alternaria tenuis, Aspergillus spp., Cercospora kikuchii, Penicillium spp. and Fusarium spp. were the predominant fungi. C. kikuchii was isolated more often from purple stained seed than from unstained seed, and Fusarium spp., Phomopsis sp., Aspergillus spp. and Penicillium spp. were isolated less frequently in stained than unstained seeds. In inoculation experiments, C. kikuchii, Colletotrichum dematitum, Phomopsis sp. produced mild to severe symptoms on leaves when suspension of their conidia and mycelia were sprayed on to plants. In soil inoculation experiments, Fusarium oxysporum, F. moniliforme and F. semitectum showed pathogenicity causing seed rot and seedling blight.

  • PDF

Cultural characteristics of fungal species associated with deterioration or foxing of paper and chemical removal (종이변색균류의 배양적 특성 및 화학적 방법에 의한 변색제거)

  • Jo, Seong-Eun;Kim, Yong-Tae;Jeong, So-Yeong;Jo, Byeong-Muk;Lee, Jong-Gyu
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2009.04a
    • /
    • pp.295-303
    • /
    • 2009
  • The annals of Joseon dynasty, especially the volumes of King SeJong(1418-1450 A.D.), were heavily deteriorated by fungi. Investigations on the deteriorating and foxing fungi were carried out. Fungal structures on the beeswax, which were coated on the both side of Han-Ji, were suspected to be involved in the deterioration, and were observed by SEM. Isolation and culturing of these fungi were tried by scrubing swab samples and placing on the artificial media. Culture-independent approaches were used to identify the fungal strains associated with damages of beeswax and foxing of the paper by the analyses based on DNA sequences data from the specific ITS region of rDNA regions. In addition, well-known paper staining fungi(PSF), i.e., Aspergillus terreus var. terreus, Fusarium oxysporum, Chaetomium globosum, Cladosporium cladosporioides, and Alternaria solani, were compared in the mycelial growth and stain on beeswax and papers under different environmental conditions (temperature, light, moisture, etc). Fungal strains isolated from the air samples in the storage room and shelves were identified as Irpex sp., Arthrinium sacchari, Cladosporium tenuissimum, Aspergillus sclerotiorum, Sistotrema brinkmannii, and Hypoxylon bovei var. microsporum The isolated strains were compared in growth and stain patterns on beeswax and papers(Han-Ji, Hwa-Ji, and Yang-Ji) whether these can cause damage or foxing on the annals or not.

  • PDF

Purification and Characterization of Chitinase from Paenibacillus illinoisensis KJA-424

  • JUNG WOO JIN;KUK JU HEE;KIM KIL YONG;KIM TAE HWAN;PARK RO DONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.274-280
    • /
    • 2005
  • A chitinase was purified from the culture supernatant of Paenibacillus illinoisensis KJA-424 by protein precipitation, DEAE-Sephadex anion-exchange chromatography, and Sephadex G-150 gel filtration. The molecular weight of the purified chitinase was 54 kDa on SDS-PAGE and activity staining. Optimal pH and temperature were pH 5.0 and 60$^{circ}$C, the presence of 10 ruM Ag$^{+}$ and Hg$^{2+}$ inhibited the activity by $92.1/%$ and $97.7/%$, and the K$_{m}$ and V$_{max}$ values were 1.12 mg chitin mrl and 1.48$\mu$mol GlcNAc min$^{-1}$, respectively. The enzyme hydrolyzed tetramer to dimer, pentamer to dimer and trimer, and hexamer to dimer, trimer and tetramer, indicating an endo-splitting mechanism. The chitinase had no hydrolytic activity toward dimer and trimer. The chitinase inhibited the mycelial growth of Rhizoctonia solani, suggesting an antifungal property.

Diversity of Fungal Endophytes in Various Tissues of Panax ginseng Meyer Cultivated in Korea

  • Park, Young-Hwan;Lee, Soon-Gu;Ahn, Doek-Jong;Kwon, Tae-Ryong;Park, Sang-Un;Lim, Hyoun-Sub;Bae, Han-Hong
    • Journal of Ginseng Research
    • /
    • v.36 no.2
    • /
    • pp.211-217
    • /
    • 2012
  • Endophytic fungi were isolated from various tissues (root, stem, petiole, leaf, and flower stalk) of 3- and 4-year-old ginseng plants (Panax ginseng Meyer) cultivated in Korea. The isolated endophytic fungi were identified based on the sequence analysis of the internal transcribed spacer (ITS), 1-5.8-ITS 2. A morphological characterization was also conducted using microscopic observations. According to the identification, 127 fungal isolates were assigned to 27 taxa. The genera of Phoma, Alternaria and Colletotrichum were the most frequent isolates, followed by Fusarium, Entrophospora and Xylaria. Although 19 of the 27 taxa were identified at the species level, the remainder were classified at the genus level (6 isolates), phylum level (Ascomycota, 1 isolate), and unknown fungal species (1 isolate). Endophytic fungi of 13 and 19 species were isolated from 3- and 4-year-old ginseng plants, respectively, and Phoma radicina and Fusarium solani were the most frequently isolated species colonizing the tissues of the 3- and 4-year-old ginseng plants, respectively. The colonization frequency (CF%) was dependant on the age and tissue examined: the CFs of the roots and stems in the 3-year-old ginseng were higher than the CF of tissues in the 4-year-old plants. In contrast, higher CFs were observed in the leaves and petioles of 4-year-old plants, and endophytic fungi in the flower stalks were only detected in the 4-year-old plants. In conclusion, we detected diverse endophytic fungi in ginseng plants, which were distributed differently depending on the age and tissue examined.

Azadirachtin, a Novel Biopesticide from Cell Cultures of Azadirachta indica

  • Balaji Kaveti;Veeresham Ciddi;Srisilam Keshetty;Kokate Chandrakanth
    • Journal of Plant Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.121-129
    • /
    • 2003
  • Callus cultures of Azadirachta indica flower petals were established on MS medium supplemented with naphthalene acetic acid (1 mg/L), kinetin (0.5 mg/L) and sucrose $(3\%\;w/v)$. Cell cultures of Azadirachta indica were established and studied the growth and production kinetics. Half 85 medium supplemented with dicamba (2 mg/L), kinetin (1 mg/L) and sucrose $(3\%\;w/v)$ was found to be suitable for initiation and maintenance of cell cultures from the calli. MS medium supplemented with naphthalene acetic acid (NAA) (1 mg/L), kinetin (0.5 mg/L) and sucrose $(3\%\;w/v)$ was found to be suitable as production medium. Around $80\%\;(0.05\%\;w/v)$ of azadirachtin was found to be intracellular. The effect of various precursors, elicitors, permeabilizing agents and growth retardants in cell cultures was studied. The addition of precursors sodium acetate (10 mg/L), squalene (10 mg/L), isopentenyl pyrophosphate (1 mg/L) and geranyl pyrophosphate (1 mg/L) to the cell cultures on day 3 has shown significant increase in bioproduction of azadirachtin $(64.94{\pm}4.40\;mg/L,\;72.81{\pm}0.04\;mg/L,\;51.63{\pm}1.26\;mg/L\;and\;30.70{\pm}0.28\;mg/L\;respectively)$ over the control cultures $(4.70{\pm}0.27 mg/L)$. $5\%$ v/v cell extracts of Fusarium solani has shown moderate increase in the content of azadirachtin $(5.71{\pm}0.34\;mg/L)$ when compared to control cultures $(2.40{\pm}0.56\;mg/L)$. The addition of methyl jasmonate $(500\;{\mu}M/L)$ on day 3 has shown $\~4$ fold improvement in bioproduction of azadirachtln $(6.92{\pm}0.11\;mg/L)$ when compared to control cultures $(1.63{\pm}0.02\;mg/L)$. There was no significant effect of the studied growth retardants and permeabilizing agents on bioproduction of azadirachtin. Cells are cultivated in large volumes using the effective precursors.

Phenazine and 1-Undecene Producing Pseudomonas chlororaphis subsp. aurantiaca Strain KNU17Pc1 for Growth Promotion and Disease Suppression in Korean Maize Cultivars

  • Tagele, Setu Bazie;Lee, Hyun Gu;Kim, Sang Woo;Lee, Youn Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.66-78
    • /
    • 2019
  • In this study, strain KNU17Pc1 was tested for its antifungal activity against Rhizoctonia solani AG-1(IA), which causes banded leaf and sheath blight (BLSB) of maize. KNU17Pc1 was tested further for its broad-spectrum antifungal activity and in vitro plant growth promoting (PGP) traits. In addition, the in vivo effects of KNU17Pc1 on reduction of BLSB severity and seedling growth promotion of two maize cultivars under greenhouse conditions were investigated. On the basis of multilocus sequence analysis (MLSA), KNU17Pc1 was confirmed as P. chlororaphis subsp. aurantiaca. The study revealed that KNU17Pc1 had strong in vitro antifungal activity and was effective toward all in vitro PGP traits except phosphate solubilization. In this study, for the first time, a strain of P. chlororaphis against Colletotrichum dematium, Colletotrichum gloeosporioides, Fusarium oxysporum f.sp. melonis, Fusarium subglutinans and Stemphylium lycopersici has been reported. Further biochemical studies showed that KNU17Pc1 was able to produce both types of phenazine derivatives, PCA and 2-OH-PCA. In addition, solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis identified 13 volatile organic compounds (VOCs) in the TSB culture of KNU17Pc1, 1-undecene being the most abundant volatile. Moreover, for the first time, Octamethylcyclotetrasiloxan (D4), dimethyl disulfide, 2-methyl-1,3-butadiene and 1-undecene were detected in P. chlororaphis. Furthermore, this study reported for the first time the effectiveness of P. chlororaphis to control BLSB of maize. Hence, further studies are necessary to test the effectiveness of KNU17Pc1 under different environmental conditions so that it can be exploited further for biocontrol and plant growth promotion.

Identification of Antagonistic Bacteria, Pseudomonas aurantiaca YC4963 to Colletotri­chum orbiculare Causing Anthracnose of Cucumber and Production of the Antibiotic Phenazine-l-carboxylic acid (Colletotrichum orbiculare에 대한 길항세균 Pseudomonas aurantiaca YC4963의 분리 동정 및 항균물질 Phenazine-1-carboxylic acid의 생산)

  • Chae Hee-Jung;Kim Rumi;Moon Surk-Sik;Ahn Jong-Woong;Chung Young-Ryun
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.342-347
    • /
    • 2004
  • A bacterial strain YC4963 with antifungal activity against Colletotrichum orbiculare, a causal organism of cucumber anthracnose was isolated from the rhizosphere soil of Siegesbeckia pubescens Makino in Korea. Based on physiological and biochemical characteristics and 16S ribosomal DNA sequence analysis, the bac­terial strain was identified as Pseudomonas aurantiaca. The bacteria also inhibited mycelial growth of several plant fungal pathogens such as Botrytis cinerea, Fusarium oxysporum and Rhizoctonia solani on PDA and 0.1 TSA media. The antifungal activity was found from the culture filtrate of this isolate and the active compound was quantitatively bound to XAD adsorption resin. The antibiotic compound was purified and identified as phenazine-l-carboxylic acid on the basis of combined spectral and chemical analyses data. This is the first report on the production of phenazine-l-carboxylic acid by Pseudomonas aurantiaca.