In order to increase productivity of an assembly system composed of multiple robots along a conveyer line, an efficient sequence planning is necessary because the assembly time is dependent upon the assembly sequence. In this paper, a two-robot assembly system is considered in which two robots operate simultaneously and transfer parts from the part feeders to the workpiece on the conveyer one by one. In this case, the distance from the feeder to the workpiece varies with time because the workpiece moves at a constant speed on the conveyer. Hence, the sequence programming is not a trivial problem. Also, the two robots may interfere with each other kinematically and dynamically due to the simultaneous operation, so the sequence should be programmed to avoid the interferences. In this paper, the task sequence optimization problem is formulated and is solved by employing the simulated annealing which has been shown to be effective for solving large combinatorial optimizations.
Reference string recognition is to extract individual reference strings from a reference section of an academic article, which consists of a sequence of reference lines. This task has been attacked by heuristic-based, clustering-based, classification-based approaches, exploiting lexical and layout characteristics of reference lines. Most classification-based methods have used sequence labeling to assign labels to either a sequence of tokens within reference lines, or a sequence of reference lines. Unlike the previous token-level sequence labeling approach, this study attempts to assign different labels to the beginning, intermediate and terminating tokens of a reference string. After that, post-processing is applied to identify reference strings by predicting their beginning and/or terminating tokens. Experimental evaluation using English and German reference string recognition datasets shows that the proposed method obtains above 94% in the macro-averaged F1.
Molecular amplification and sequencing of genomic DNA that encodes camel polyubiquitin (PUBC1) was performed by a polymerase chain reaction (PCR) using various sets of primers. The amplification generated a number of DNA fragments, which were sequenced and compared with the polyubiquitin coding sequences of various species. One DNA fragment that conformed to 325 bp was found to be 95 and 88% homologous to the sequences of human polyubiquitin B and C, respectively. The DNA translated into 108 amino acids that corresponded to two fused units of ubiquitin with no intervening sequence, which indicates that it is a polyubiquitin and contains at least two units of ubiquitin. Although, variations were found in the nucleotide sequence when compared to those of other species, the amino acid sequence was 100% homologous to the polyubiquitin sequences of humans, mice, and rats. This is the first report of the polyubiquitin DNA coding sequence and its corresponding amino acid sequence from camels, amplified using direct genomic DNA preparations.
This study represents the method of application of W.S(Work Sampling) to determine job sequence. The result shows job sequence which has the came performance measure of optimal job sequence is selected by average number of 199 sampling. In the case, the optimal job sequence is not selected within the sampling number of 921 which satisfy the reliability of 99.5% and precision of 99%, the deviation is very little which 0.73%. This improves the possibility of application of W.S method to select optimal job sequence is very high.
Journal of the Korean Society for Industrial and Applied Mathematics
/
제25권4호
/
pp.296-311
/
2021
Topological Data Analysis (TDA), a relatively new field of data analysis, has proved very useful in a variety of applications. The main persistence tool from TDA is persistent homology in which data structure is examined at many scales. Representations of persistent homology include persistence barcodes and persistence diagrams, both of which are not straightforward to reconcile with traditional machine learning algorithms as they are sets of intervals or multisets. The problem of faithfully representing barcodes and persistent diagrams has been pursued along two main avenues: kernel methods and vectorizations. One vectorization is the Betti sequence, or Betti curve, derived from the persistence barcode. While the Betti sequence has been used in classification problems in various applications, to our knowledge, the stability of the sequence has never before been discussed. In this paper we show that the Betti sequence is unstable under the 1-Wasserstein metric with regards to small perturbations in the barcode from which it is calculated. In addition, we propose a novel stabilized version of the Betti sequence based on the Gaussian smoothing seen in the Stable Persistence Bag of Words for persistent homology. We then introduce the normalized cumulative Betti sequence and provide numerical examples that support the main statement of the paper.
Teaching the notion of limit of the sequence in high school mathematics needs special attention and accurate teaching methods, for it is one of the most important bases of the advanced mathematics. Therefore it is necessary for high school students to have the right understanding of the notion of limit of the sequence. In this paper, we survey several teaching methods of the notion of limit of the sequence in high school mathematics and introduce a new method using Excell program. Also through questionnaire survey we discuss and analyse students' reaction when they learn the notion of limit of the sequence. And based on that, we suggest a method that would be believed to improve the students' understanding for the notion of limit It should be also notified that questionnaire survey was performed in order to find out which method would be appropriate to teach the notion of limit of the sequence, and that the survey result was fully reflected in the guideline that suggested.
International Journal of Fuzzy Logic and Intelligent Systems
/
제14권3호
/
pp.209-215
/
2014
Sequence tagging is the task of predicting frame-wise labels for a given input sequence and has important applications to diverse domains. Conventional methods such as maximum likelihood (ML) learning matches global features in empirical and model distributions, rather than local features, which directly translates into frame-wise prediction errors. Recent probabilistic sequence models such as conditional random fields (CRFs) have achieved great success in a variety of situations. In this paper, we introduce a novel discriminative CRF learning algorithm to minimize local feature mismatches. Unlike overall data fitting originating from global feature matching in ML learning, our approach reduces the total error over all frames in a sequence. We also provide an efficient gradient-based learning method via gradient forward-backward recursion, which requires the same computational complexity as ML learning. For several real-world sequence tagging problems, we empirically demonstrate that the proposed learning algorithm achieves significantly more accurate prediction performance than standard estimators.
An efficient procedure to obtain the optimal stacking sequence and the minimum weight of stiffened laminated composite curved panels under several loading conditions and stiffener layouts has been developed based on the finite element method and the genetic algorithm that is powerful for the problem with integer variables. Often, designing composite laminates ends up with a stacking sequence optimization that may be formulated as an integer programming problem. This procedure is applied for a problem to find the stacking sequence having a maximum critical buckling load factor and the minimum weight. The object function in this case is the weight of a stiffened laminated composite shell. Three different types of stiffener layouts with different loading conditions are investigated to see how these parameters influence on the stacking sequence optimization of the panel and the stiffeners. It is noticed from the results that the optimal stacking sequence and lay-up angles vary depending on the types. of loading and stiffener spacing.
자동 띄어쓰기 특성을 효과적으로 처리할 수 있는 LSTM(Long Short-Term Memory Neural Networks) 기반의 RNN 모델을 제시하고 적용한 결과를 분석하였다. 문장이 길거나 일부 노이즈가 포함된 경우에 신경망 학습이 쉽지 않은 문제를 해결하기 위하여 입력 데이터 형식과 디코딩 데이터 형식을 정의하고, 신경망 학습에서 드롭아웃, 양방향 다층 LSTM 셀, 계층 정규화 기법, 주목 기법(attention mechanism)을 적용하여 성능을 향상시키는 방법을 제안하였다. 학습 데이터로는 세종 말뭉치 자료를 사용하였으며, 학습 데이터가 부분적으로 불완전한 띄어쓰기가 포함되어 있었음에도 불구하고, 대량의 학습 데이터를 통해 한글 띄어쓰기에 대한 패턴이 의미 있게 학습되었다. 이것은 신경망에서 드롭아웃 기법을 통해 학습 모델의 오버피팅이 되지 않도록 함으로써 노이즈에 강한 모델을 만들었기 때문이다. 실험결과로 LSTM sequence-to-sequence 모델이 재현율과 정확도를 함께 고려한 평가 점수인 F1 값이 0.94로 규칙 기반 방식과 딥러닝 GRU-CRF보다 더 높은 성능을 보였다.
This study is concerned with a job sequencing method using the concept of sampling technique in the case of Job Shop. This is the follow study of Kang and Ro (1988) which examined the possibility of application of sampling technique to determine the Job Sequence in the case of Flow Shop. Not only it is very difficult, but also it takes too much time to develop the appropriate job schedules that satisfy the complex work conditions. The most job sequencing algorithms have been developed to determine the best or good solution under the special conditions or assumptions. The application areas of these algorithms are also very narrow, so it is very hard to find the appropriate algorithm which satisfy the complex work conditions. In this case it is very desirable to develop a simple job sequencing method which can select the optimal job sequence or near optimal job sequence with a little effort. This study is to examine the effect of sampling job sequencing which can select the good job of 0.01%~5% upper good group. The result shows that there is the sets of 0.05%~23% job sequence group which has the same amount of performance measure with the optimal job sequence in the case of experiment of N/M/G/$F_{max}$. This indicates that the sampling job sequencing method is a useful job sequencing method to find the optimal or good job sequence with consuming a small amount of time. The results of ANOVA show that the only one factor, number of machines is the significant factor for determining the job sequence at ${\alpha}=0.01$. It takes about 10 minutes to compare the number of 10,000 samples of job sequence by personal computer and it is proved that the selection rate of the same job sequence with optimal job sequence is 23.0%, 3.9% and 0.065% in the case of 2 machines, 3 machines and 4 machines, respectively. The area of application can readily be extended to the other work condition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.