• Title/Summary/Keyword: A-frame method

Search Result 4,081, Processing Time 0.036 seconds

Development Process of Monocoque Frame for Hybrid Bicycle using Bolt Fastening (볼트체결을 이용한 하이브리드 자전거 모노코크 프레임 개발 프로세스)

  • Lee, In-Chul;Jang, Dong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.93-100
    • /
    • 2013
  • This paper presents the development process for a bicycle monocoque frame using bolt fastening. Traditionally, bicycle frames have been constructed with metal tubes joined at their ends by welding. These frames have been brazed or soldered onto metal lugs, forming the frame. Because stress loads become greatest at the joint of the bicycle tube frame, joint construction strongly influences frame design and construction. To avoid the inherent problems of material discontinuity at frame joints, numerous designers have attempted to reduce or eliminate the number of joints in tube frames. Nevertheless, the manufacture of high quality, reliable, one-piece and jointless frames has proven difficult and expensive. In this study, a new monocoque frame adapted to a hybrid bike is proposed. The advantage of the monocoque frame, is theat is has a rechargeable battery system that is built into the frame; as a result, the emotional quality for the customer is improved. In order to estimate the design compatibility compared with that of tube frames, structural analysis is performed using finite element method. A prototype based on a modified design has also been made and stability testing has been carried out.

A Study on Detecting Glasses in Facial Image

  • Jung, Sung-Gi;Paik, Doo-Won;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.21-28
    • /
    • 2015
  • In this paper, we propose a method of glasses detection in facial image. we develop a detection method of glasses with a weighted sum of the results that detected by facial element detection and glasses frame candidate region. Component of the face detection method detects the glasses, by defining the detection probability of the glasses according to the detection of a face component. Method using the candidate region of the glasses frame detects the glasses, by defining feature of the glasses frame in the candidate region. finally, The results of the combined weight of both methods are obtained. The proposed method in this paper is expected to increase security system's recognition on facial accessories by raising detection performance of glasses or sunglasses for using ATM.

A simplified method for free vibration analysis of wall-frames considering soil structure interaction

  • Kara, Dondu;Bozdogan, Kanat Burak;Keskin, Erdinc
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.37-46
    • /
    • 2021
  • In this study, a method for free vibration analysis of wall-frame systems built on weak soil is proposed. In the development of the method, the wall-frame system that constitutes the superstructure was modeled as flexural-shear beam. In the study, it is accepted that the soil layers are isotropic, homogeneous and elastic, and the waves are only vertical propagating shear waves. Based on this assumption, the soil layer below is modeled as an equivalent shear beam. Then the differential equation system that represented the behavior of the whole system was written for both regions in a separate way. Natural periods were obtained by solving the differential equations by employing boundary conditions. At the end of the study, two examples were solved and the suitability of the proposed method to the Finite Element Method was evaluated.

Fast Reference Frame Selection Method Based on Best Reference Frame Index Correlation

  • Kim, Hyungwook;Lim, Sojeong;Yu, Sungwook
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.179-182
    • /
    • 2014
  • This letter presents a very simple yet very effective solution for fast reference frame (RF) selection in H.264/AVC. By efficiently making use of the correlation between the best RF indices in various inter modes, the proposed method significantly reduces the number of RFs to be examined at the expense of a very small miss rate. Simulation results show that the proposed method not only improves upon the coding performance of conventional methods but also reduces the encoding time significantly.

Seismic performance of RC-column wrapped with Velcro

  • Kwon, Minho;Seo, Hyunsu;Kim, Jinsup
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.379-395
    • /
    • 2016
  • A seismic strengthening method using Velcro is proposed to improve the seismic performance of columns in RC frame structures. The proposed method was evaluated experimentally using three fabricated RC specimens. Velcro was wrapped around the columns of the RC-frame specimen to prevent concrete spall falling. The reinforcing performance of the Velcro was determined from comparison of results on seismic performance (i.e., strength, displacement, failure mode, displacement ductility capacity and amount of dissipated energy). As the displacement of the reinforced specimens was increased, the amount of dissipated energy increased drastically, and the displacement-ductility-capacity of the reinforced specimens also increased. The final failure mode of RC frame structure was changed. As a result, it was concluded that the proposed seismic strengthening method using Velcro could be used to increase the displacement ductility of RC columns, and could be used to change the final failure mode of RC-frame structures.

Limiting the sway on multi-storey un-braced steel frames bending on weak axis with partial strength connections

  • Tahir, Mahmood Md.;Ngian, Poi Shek
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.825-847
    • /
    • 2011
  • This paper investigates the design using wind-moment method for semi-rigid un-braced steel frames bending on weak axis. A limiting sway method has been proposed to reduce the frame sway. Allowance for steel section optimization between moment of inertia on minor axis column and major axis beam was used in conjunction with slope-deflection analysis to derive equations for optimum design in the proposed method. A series of un-braced steel frames comprised of two, four, and six bays ranging in height of two and four storey were studied on minor axis framing. The frames were designed for minimum gravity load in conjunction with maximum wind load and vice-versa. The accuracy of the design equation was found to be in good agreement with linear elastic computer analysis up to second order analysis. The study concluded that the adoption of wind-moment method and the proposed limiting sway method for semi-rigid steel frame bending on weak axis should be restricted to low-rise frames not more than four storey.

MOTION ESTIMATION METHOD BY EMPLOYING A STOCHASTIC SAMPLING TECHNIQUE

  • Seok, Jinwuk;Mah, Pyeong-Soo;Son, Yongki
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11b
    • /
    • pp.1006-1009
    • /
    • 2003
  • In a motion estimation method for use in encoding a moving picture, a full-pixel motion vector is estimated by stochastically sampling a pixel to be processed in a predetermined-sized block of a previous frame or a next frame as a reference frame for each of a plurality of equal-sized blocks in a current frame. Then, a half-pixel motion vector is estimated based on the full-pixel motion vector. Accordingly, both the calculation amount and the calculation time required for the motion estimation are effectively reduced. Further, it can be prevented that the hardware becomes complicated. .

  • PDF

Analysis of seismic behavior of composite frame structures

  • Zhao, Huiling
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.719-729
    • /
    • 2016
  • There are great needs of simple but reliable mechanical nonlinear behavior analysis and performance evaluation method for frames constructed by steel and concrete composite beams or columns when the structures subjected extreme loads, such as earthquake loads. This paper describes an approach of simplified macro-modelling for composite frames consisting of steel-concrete composite beams and CFST columns, and presents the performance evaluation procedure based on the pushover nonlinear analysis results. A four-story two-bay composite frame underground is selected as a study case. The establishment of the macro-model of the composite frame is guided by the characterization of nonlinear behaviors of composite structural members. Pushover analysis is conducted to obtain the lateral force versus top displacement curve of the overall structure. The identification method of damage degree of composite frames has been proposed. The damage evolution and development of this composite frame in case study has been analyzed. The failure mode of this composite frame is estimated as that the bottom CFST columns damage substantially resulting in the failure of the bottom story. Finally, the seismic performance of the composite frame with high strength steel is analyzed and compared with the frame with ordinary strength steel, and the result shows that the employment of high strength steel in the steel tube of CFST columns and steel beam of composite beams benefits the lateral resistance and elasticity resuming performance of composite frames.

A Study on the Performance Experiments of Lightweight Wall of Long-life Housing by Ceiling Infill System (천장 인필시스템에 따른 장수명주택 경량벽체의 성능실험에 관한 연구)

  • Seo, Dong-Goo;Lee, Jong-Ho;Kim, Eun-Young;Hwang, Eun-Kyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.247-248
    • /
    • 2018
  • In order to secure the variability of long-life housing, dry walls are used. The composite gypsum board panel is the most frequently used infill system for the wall, and it is an excellent construction method in terms of constructability and economic feasibility. However, there are also problems such as the destruction of Ondol pipes at the bottom floor and being unable to fix the light weight steel frame (M-bar) when a variable composite gypsum board panel is used. To solve such problems, a wall with a method of fixing only the top part without fixing the bottom floor is developed, but it is difficult to identify the durability of ceiling frame according to the tensile force of stud and the safety according to the Stiffness and impact resistance (soft body) of ceiling frame. Therefore, this study verified the effectiveness of infill system for the wall by conducting experiment on the stiffness and impact resistance of composite gypsum board panel according to the reinforcement of ceiling frame (wooden frame, double saw-toothed bracket, Cross M-bar). As a result, it was possible to secure the safety of wooden frame while the impact resistance and the Stiffness of double saw-toothed bracket and cross M-bar were not secured.

  • PDF

Advanced Real-Time Rate Control for Low Bit Rate Video Communication

  • Kim, Yoon
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.5
    • /
    • pp.513-520
    • /
    • 2006
  • In this paper, we propose a novel real-time frame-layer rate control algorithm using sliding window method for low bit rate video coding. The proposed rate control method performs bit allocation at the frame level to minimize the average distortion over an entire sequence as well as variations in distortion between frames. A new frame-layer rate-distortion model is derived, and a non-iterative optimization method is used for low computational complexity. In order to reduce the quality fluctuation, we use a sliding window scheme which does not require the pre-analysis process. Therefore, the proposed algorithm does not produce time delay from encoding, and is suitable for real-time low-complexity video encoder. Experimental results indicate that the proposed control method provides better visual and PSNR performance than the existing TMN8 rate control method.

  • PDF