• Title/Summary/Keyword: A-POC

Search Result 146, Processing Time 0.021 seconds

The Characteristics of suspended particulate matter and surface sediment of C, N in the Northern East China Sea ill summer (제주도 서남방 동중국해에서 하계 입자성부유물 및 표층퇴적물의 C, N 분포 특성)

  • KANG Mun Gyu;CHOI Young Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.4
    • /
    • pp.13-23
    • /
    • 2003
  • Organic carbon and nitrogen contents in suspended particulate matter (SPM) and surface sediments in seawater were measured in the Northern East China Sea in summer. The distribution of particulate organic carbon(POC) and particulate organic nitrogen(PON) were in the ranges of 54~481㎍/ℓ and 6~85㎍/ℓ, respectively, with relatively high level of concentrations in the western and southern sides of the study area. Also, there has been a significantly positive correlation between POC and PON, gradually increasing toward the deeper range of depth. Average C:N ratios of POC and PON of SPM were 6 in study area. The ratios of POC to PON of SPM increased as the range of depth increased, indicating nitrogen decomposes more rapidly than carbon and is considered to be influenced by the input of detritus from surface sediments. The distribution of total organic matter(TOM), total organic carbon(TOC) and total organic nitrogen(TON) in surface sediments were in the ranges of 3.1~9.6%, 0.282~0.635% and 0.022~0.069%, respectively, with relatively low range in the western and northern sides of the study area. The ratio of TOC to TON of surface sediments were in the range of 9.8~17.4(average of 13), strongly indicating the active role of the input from the terrestrial organic pollutants.

  • PDF

Long-term Variation and Flux of Organic Carbon in the Human-disturbed Yeongsan River, Korea (영산강의 유기물 플럭스와 장기변동에 대한 연구)

  • CHO, HYEONG-CHAN;CHO, YEONG-GIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.4
    • /
    • pp.187-198
    • /
    • 2017
  • Dissolved and particulate organic carbon concentrations and fluxes were measured and estimated for the Yeongsan River during 2006~2015. The dissolved organic carbon (DOC) concentrations ranged from 2.49 to $4.39mg{\cdot}C/L$ with a variance of 30.1% (${\sigma}_x/\bar{x}$), and showed a simple correlation to algal bloom and precipitation. The particulate organic carbon (POC) concentrations had gradually decreased from 6.68 to $0.19mg{\cdot}C/L$ for 10 years, and changed definitely with weir construction in 2011. Based on the relationships between POC and suspended particulate matters and between POC and chlorophyll-a, we found out that the distinct variation of the origin and composition of POC was caused by stagnation and screening effect of the dammed river. The total organic carbon (TOC) concentrations dropped to 52.3% (from 8.26 to $3.94mg{\cdot}C/L$) as the POC concentrations diminished to more than 94.8% after weir construction, in which the DOC forms up to 90.9%. The fluxes of TOC, based on the relationship between the annual TOC concentration and the discharge of Yeongsan dike sluice, were $2.56{\sim}19.41{\times}10^9g{\cdot}C/yr$, and showed a great deal of variability in 2011. Since then the TOC flux dropped to $5.40{\times}10^9$ (2011~2015) from $14.54{\times}10^9g{\cdot}C/yr$ (2006~2010). These results suggest that the weirs trapped annually $1.83{\times}10^9g{\cdot}C$ on a river bed, but released in great levels of dissolved organic form at their exits.

Tracing Source and Concentration of Riverine Organic Carbon Transporting from Tamjin River to Gangjin Bay, Korea (탐진강-강진만의 댐하류 열린하구 시스템에서 유기탄소의 조성 및 기원 변화 연구)

  • Park, Hyung-Geun;Kang, Dong-Won;Shin, Kyung-Hoon;Ock, Giyoung
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.422-431
    • /
    • 2017
  • The biogeochemical information of riverine organic matter gives a detailed and integrated recording of natural and anthropogenic activity within a watershed. To investigate the changes in quality and quantity of organic carbon transporting from mountain to ocean via river channels, we estimated the concentrations of dissolved (DOC) and particulate organic carbon (POC), and then traced the source origin of POC using stable carbon isotopes ratio before and after summer rainfalls in the Tamjin River and Ganjin Bay, Korea. Along the small watershed, a total of 13 sites including headwaters, dam reservoir, river and estuary were established for the study. We found some interesting findings in the aspect of distribution of DOC/POC concentration changing their origin sources dynamically flowing downstream. In particular, the river channel transport downstream mainly DOC to river mouth, although upper dam reservoir increased POC concentration by phytoplankton production in summer. Whereas, in the river mouth and estuary, POC was dominated not only by local supply from nearby reed saltmarsh, but also by marine phytoplankton production, respectively. The findings can contribute to increasing the understanding of riverine organic carbon transport in upper large dam and lower open estuary system.

The Development of Commercialization in the Idea of the Fashion Design, Issey Miyake (잇세이 미야케의 디자인 발상과 상업화를 위한 전개과정에 대한 연구)

  • Cho, Jung-Mee;Huh, Eun-Joo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.1
    • /
    • pp.80-91
    • /
    • 2009
  • The purpose of this study is to examine how he successfully connected his ideas of fashion design for art with the commerciality without a conflict about for 40 years. It is expected that this study will be a precedent in the aspect of the symmetry between artistry and commercialization in Issey Miyake's works. We will examine Issey Miyake's idea of fashion design and its development for the commercialization since 1970s that he started to give shape to his ideas in the fashion works to exactly commercialize in the market. 1. Re-creation of tradition(a piece of cloth): throughout the 1970s, Miyake continued to experiment with a variety of Eastern design elements. The elements of Japanese or oriental tradition made him to be at the very center of supreme of the world of fashion. He took advantages of his identity, and developed the tradition for mass produce. 2. Design for mass(Pleats Please): Miyake decided to make clothes for the people, not only for the top class of the society. This thought developed the designs for the mass, which were functional, universal for the modem buyer, and accessible to a wide market. He realized his ideal by the medium of pleats, which were made through industrial processes, while he tried variously the aspect of formative of the pleats in the collections. His designs concept is summarized by the industrial product design and anonymous design. 3. Innovation of manufacturing system(A-POC): Miyake in 1999 developed A-POC. A-POC is used modern computers in conjunction with traditional technology. A-POC does not make only a new cloth but also makes a new manufacturing system of clothes.

Filter- and Denuder-Based Organic Carbon Correction for Positive Sampling Artifacts

  • Hwang, InJo;Na, Kwangsam
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.107-113
    • /
    • 2017
  • This study describes (1) the impact of positive sampling artifacts caused by not only a filter-based sampling, but also a denuder-based sampling in the determination of particle-phase organic carbon (POC), (2) the effect of sample flow rate on positive artifacts, and (3) an optimum flow rate that provides a minimized negative sampling artifact for the denuder-based sampling method. To achieve the goals of this study, four different sampling media combinations were employed: (1) Quartz filter-alone (Q-alone), (2) quartz filter behind quartz-fiber filter (QBQ), (3) quartz filter and quartz filter behind Teflon filter (Q-QBT), and (4) quartz filter behind carbon-based denuder (Denuder-Q). The measurement of ambient POC was carried out in an urban area. In addition, to determine gas-phase OC (GOC) removal efficiency of the denuder, a Teflon filter and a quartz filter were deployed upstream and downstream of the denuder, respectively with varying sample flow rates: 5, 10, 20, and 30 LPM. It was found that Q-alone sampling configuration showed a higher POC than QBQ, Q-QBT, and Denuder-Q by 12%, 28%, and 23%, respectively at a sample flow rate of 20 LPM due to no correction for positive artifact caused by adsorption of GOC onto the filter. A lower quantity of GOC was collected from the backup quartz filter on QBQ than that from Q-QBT. This was because GOC was not in equilibrium with that adsorbed on the front quartz filter of QBQ during the sampling period. It is observed that the loss of particle number and mass across the denuder increases with decreasing sample flow rate. The contribution o f positive arti facts to POC decreased with increasing sample flow rate, showing 29%, 25%, and 22% for 10, 20, and 30 LPM, respectively. The 20 LPM turns out to be the optimum sample flow rate for both filter and denuder-based POC sampling.

Nutrients and Particulate Organic Matter in Asan Bay (아산만의 영양염 및 입자성 유기물)

  • MOON Chang-Ho;PARK Chul;LEE Sung Yong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.173-181
    • /
    • 1993
  • Seasonal distributions of nutrients and particulate organic matter were investigated in Asan Bay, Korea. Most of nutrients were high in August and low in February. The atomic ratios of inorganic nitrogen to phosphorous were close to Redfield ratio except in May when the ratio was 24.8. In May, nutrient concentrations except phosphorous decreased with salinity until $31.5{\sim}32.0%0$, but the concentrations increased again with salinity, impling that there were nutrient input sources within the estuary. Howerer, significant inverse relationships between nutrients and salinity in August suggest that nutrient sources were river discharge. Maximum chlorophyll a concentrations occurred in May. Relatively low ratios of $R_b$ to $R_a$($R_b$: fluorescence before acidification; $R_a$: fluorescence after acidification) during the study periods indicate that phytoplankton were not in good physiological condition. Relatively low ratio of particulate biogenic silica(PBSi) to particulate organic carbon(POC) and high ratios of PBSi and POC to chlorophyll a during the study periods suggest input of non-living detrital PBSi and POC from bottom in Asan Bay, where strong tidal mixing occurs.

  • PDF

GDNF secreted by pre-osteoclasts induces migration of bone marrow mesenchymal stem cells and stimulates osteogenesis

  • Yi, Sol;Kim, Jihee;Lee, Soo Young
    • BMB Reports
    • /
    • v.53 no.12
    • /
    • pp.646-651
    • /
    • 2020
  • Bone resorption is linked to bone formation via temporal and spatial coupling within the remodeling cycle. Several lines of evidence point to the critical role of coupling factors derived from pre-osteoclasts (POCs) during the regulation of bone marrow-derived mesenchymal stem cells (BMMSCs). However, the role of glial cell-derived neurotrophic factor (GDNF) in BMMSCs is not completely understood. Herein, we demonstrate the role of POC-derived GDNF in regulating the migration and osteogenic differentiation of BMMSCs. RNA sequencing revealed GDNF upregulation in POCs compared with monocytes/macrophages. Specifically, BMMSC migration was inhibited by a neutralizing antibody against GDNF in pre-osteoclast-conditioned medium (POC-CM), whereas treatment with a recombinant GDNF enhanced migration and osteogenic differentiation. In addition, POC-CM derived from GDNF knock-downed bone marrow macrophages suppressed BMMSC migration and osteogenic differentiation. SPP86, a small molecule inhibitor, inhibits BMMSC migration and osteogenic differentiation by targeting the receptor tyrosine kinase RET, which is recruited by GDNF into the GFRα1 complex. Overall, this study highlights the role of POC-derived GDNF in BMMSC migration and osteogenic differentiation, suggesting that GDNF regulates bone metabolism.

Soil Carbon Dioxide Flux and Organic Carbon in Grassland after Manure and Ammonium Nitrate Application

  • Lee, Do-Kyoung;Doolittle, James J.
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.238-244
    • /
    • 2005
  • Fertilization effects on changes in soil $CO_2$ flux and organic C in switchgrass (Panicum virgatum L.) land managed for biomass production were investigated. The mean daily soil $CO_2$ flux in the manure treatment was 5.63 g $CO_2-C\;m^{-2}\;d^{-1}$, and this was significantly higher than the mean value of 3.36 g $CO_2-C\;m^{-2}\;d^{-1}$ in the control. The mean daily $CO_2$ fluxes in N and P fertilizer treatments plots were not different when compared to the value in the control plots. Potentially mineralizable C (PMC), soil microbial biomass C (SMBC), and particulate organic C (POC) were highest at the 0 to 10 cm depth of the manure treatment. Potentially mineralizable C had the strongest correlation with SMBC (r = 0.91) and POC (r = 0.84). There was also a strong correlation between SMBC and POC (r = 0.90). Our results indicated that for the N and P levels studied, fertilization had no impact on temporal changes in soil organic C, but manure application had a significant impact on temporal changes in soil $CO_2$ evolution and active C constituents such as PMC, SMBC, and POC.

Current Status and Prospects Regarding Radiocarbon Studies in the East Sea (동해 방사성탄소동위원소 연구 현황과 전망)

  • Kim, Minkyoung
    • Ocean and Polar Research
    • /
    • v.44 no.1
    • /
    • pp.99-111
    • /
    • 2022
  • Together with the development of measurement techniques, radiocarbon (14C) has been increasingly used as a key tool to investigate carbon cycling and associated biogeochemistry in the ocean. In this paper, the current status of radiocarbon studies in the East Sea (Japan Sea) is reviewed. Previously, spatiotemporal distribution and change of the water masses in the East Sea from 1979 to 1999 were investigated by using the 14C in the dissolved inorganic carbon (DIC). Researches on sinking particulate organic carbon (POC) revealed that POC in the deep ocean has more complex and heterogeneous origins than we expected. In particular, since 2011, Korean researchers have been collecting sinking particle samples for more than 10 years, so it is expected that 14C of POC will provide important information to understand carbon cycling in relation to climate change. Although the quantity of 14C data published in the East Sea is still limited, the importance and the future direction of using 14C to understand the biogeochemical mechanisms of carbon cycling and its role as a carbon reservoir in the East Sea are detailed herein.

A Study on Transport Characteristics of Organic and Inorganic Carbons in the Open Estuary of the Tamjin River, Korea (탐진강 열린하구에서 탄소물질의 성상별 이동 특성 연구)

  • Park, Hyung-Geun;Ock, Giyoung
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.665-671
    • /
    • 2018
  • This paper represents an investigation into the pattern of carbon transportation and composition on an open estuary in the transition zone between the river and marine environment in Tamjin River where stream water flows into the Gangjin Bay. To conduct the study, seven plots were established along an environmental gradient from river and estuary to the ocean. Surface water samples were collected thrice during the summer rainfalls and non-flooding seasons in 2017. The samples were then measured for the concentrations of dissolved organic carbon ([DOC]), particulate organic carbon ([POC]) and dissolved inorganic carbon ([DIC]). An analysis of the results showed that [POC] did not increase in the river even during the summer rainfall. However, [DOC] increased resulting in a higher [DOC]:[POC] ratios for the non-flooding season compared to summer rainfall events. On the other hand, the marine site of the estuary bay showed the highest [DIC] which was stable relative to those of river sites. The results suggest that in an open estuary zone, river and ocean supplied the open estuary zone with different types of carbon materials; mainly DOC supplied from the river and DIC sourced from the ocean.