• Title/Summary/Keyword: A-형 마그마

Search Result 70, Processing Time 0.027 seconds

Formation Process and Its Mechanism of the Sancheong Anorthosite Complex, Korea (산청 회장암복합체의 형성과정과 그 메커니즘)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.431-449
    • /
    • 2015
  • The study area is located in the western part of the Precambrian stock type of Sancheong anorthosite complex, the Jirisan province of the Yeongnam massif, in the southern part of the Korean Peninsula. We perform a detailed field geological investigation on the Sancheong anorthosite complex, and report the characteristics of lithofacies, occurrences, foliations, and research formation process and its mechanism of the Sancheong anorthosite complex. The Sancheong anorthosite complex is classified into massive and foliation types of Sancheong anorthosite (SA), Fe-Ti ore body (FTO), and mafic granulite (MG). Foliations are developed in the Sancheong anorthosite complex except the massif type of SA. The foliation type of SA, FTO, MG foliations are magmatic foliations which were formed in a not fully congealed state of SA from a result of the flow of FTO and MG melts and the kinematic interaction of SA blocks, and were continuously produced in the comagmatic differentiation. The Sancheong anorthosite complex is formed as the following sequence: the massive type of SA (a primary fractional crystallization of parental magmas under high pressure)${\rightarrow}$ the foliation type of SA [a secondary fractional crystallization of the plagioclase-rich crystal mushes (anorthositic magmas) primarily differentiated from parental magmas under low pressure]${\rightarrow}$the FTO (an injection by filter pressing of the residual mafic magmas in the last differentiation stage of anorthositic magmas into the not fully congealed SA)${\rightarrow}$the MG (a solidification of the finally residual mafic magmas). It indicates that the massive and foliation types of SA, the FTO, and the MG were not formed from the intrusion and differentiation of magmas which were different from each other in genesis and age but from the multiple fractionation and polybaric crystallization of the coeval and cogenetic magma.

The Wondong magmatic system : its petrochemical evolution (원동 마그마계 : 암석화학적 진화)

  • 황상구
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.166-184
    • /
    • 1997
  • The Wondong caldea is a deeply eroded structure that offers spectacular exposures through the core and margins of a resurgent caldera. The Wondong Tuff and the postcollapse intrusions range from medium-silica rhyolite to rhyodacite in composition and the postcollapse lava and tuff, preresurgent and resurgent intrusions also range from medium-silica rhyolite to an-desite, which jump to gap dacite composition. The continuous compositional zonations generally define a large stratified magma system in the postcollapse and resurgent magma chamber. Isotopic and trace element evidence suggest that the compositional zonations might have resulted from the differentiations from crystal fractionations of a parental andesitic magma, accompanying a little contamination from the crustal assimilations near the chamber roof and wall. But chemically and isotopically distinct late intusions might have resulted from emplacement of any different magma batch.

  • PDF

A Study on the Misconceptions of High School Students on Magma and Plate Tectonics (마그마와 판구조론에 대한 고등학생들의 오개념)

  • Choi, Seong-Cheol;Ahn, Kun Sang
    • Journal of Science Education
    • /
    • v.32 no.2
    • /
    • pp.121-145
    • /
    • 2008
  • The purposes of this study were to identify the misconceptions that students have on the magma and plate tectonics and to present the implications in developing textbooks as well as related curriculum of high school textbooks. Data were collected through questionnaire, consisting of some questions, short essays, and descriptive drawings, developed by the research team. A total of 140 high school students(9th graders) responded to those questionnaires and were interviewed for further information. It was reported that participants displayed various misconceptions related to magma and plate tectonics. The identified misconceptions are as follows: For the definition of magma, the 31% of participants misunderstood magma as lava. In respect to the generative mechanism of magma at subduction zone, over 90% of students responded that it is generated by frictional heat. The source of misconceptions were identified as a result from textbooks and related reference-books. For the concept of plates, 87% of students conceived 'crust or a lower part of the plates' as 'plates'. Most participants hold the right concept of oceanic ridge, whereas, 66% of them considered 'rift valley' as either 'divergence of continental plates' or 'converging boundary'. 63% of them defined 'collision boundary of continental plate' as either 'subduction zone' or 'diverging boundary'. For the definitions of the trench and Benioff zone, 86% of students responded them as the place of subduction or differing density between two converging plates. The students' misconceptions were resulted from the errors and insufficient explanation, inappropriate figures, and data presented in textbooks, reference-books, lecture, and web sites. The results of this study are implied to contribute the improvement of students' misconceptions.

  • PDF

Petrology of Jurassic Granitoids in the Hamyang-Geochang Area, Korea (함양(咸陽)-거창(居昌) 지역(地域), 쥬라기 화강암류(花崗岩類)의 암석학적(岩石學的) 연구(硏究))

  • Lee, Cheol-Lag;Lee, Yoon-Jong;Hayashi, Masao
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.447-461
    • /
    • 1992
  • The Jurassic granitoids in the study area are divided into the "Gneissose granodiorite" and the "Daebo granodiorite" (1 : 250,000 Jeonju Geological map, 1973). The term of Geochang granodiorite was used in this study instead of "Daebo granodiorite". These granitoids were studied in terms of microscopic observation, petrochemistry, and zircon morphology. The granitoids are mostly granodiorite. Two kinds of progressive variation can also be recognized in the modal quartz~alkali feldspar~plagioclase triangular diagram; the Gneissose granodiorite is in accordance with the trondhjemitic (low k) trend, and the Geochang granodiorite with the granodioritic trend (medium k). The granitoids belong to the calc-alkaline series, and are classified into the I-type (magnetite series). Plagioclase ($An_{25.1}{\sim}An_{30.9}$) in the granitoids shows generally an oligoclase composition. Biotite has a wider range in (Si, Al) solution than in (Fe, Mg) solid solution. Hornblende occurs in a few thin sections of the Geochang granodiorite, and is plotted in the tschermakite field. The zircon prism shows a long variation between the {110} dominant type and the {100} dominant type in the Geochang granodiorite, but only the {110}={100} type in the Gneissose granodiorite. However, zircon crystals in the granitoids are mostly crystallized in a low-to-medium temperature magma. In the PPEF (Prism- Pyramid-Elongation-Flatness) diagram, the Gneissose granodiorite shows a closed scissors type, the Geochang granodiorite, a opened scissors type. It indicates that the Geochang granodiorite might originate from the mixed magma with crustal materials or pre-existed residual magma which had formed the Gneissose granodiorite.

  • PDF

Geochemistry and Tectonic Implications of Triassic Bojangsan Trachyte in the Southern Margin of the Imjingang Belt, Korea (임진강대 남변부 트라이아스기 보장산조면암의 지구화학과 조구조적 의미)

  • Hwang, Sang Koo;Ahn, Ung San
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.113-125
    • /
    • 2017
  • We investigates geochemical and tectonic characteristics for the Triassic Bojangsan trachyte in the southern margin of the Imjingang belt. The geochemical signatures of the thracyte are characterized by enrichments of REE and HFS, and show no Nb trough, suggesting that would not experience arc magmatic processes involving continental crustal materials. The trachyte reveals within-plate setting in tectonic discrimination diagrams using immobile HFS Nb and Y elements. And the trachyte shows typical signatures of A-type volcanic rocks with high Ga abundance and is classified as A1-type volcanic rocks rich in Nb. The geochemical signatures suggest that the trachyte was produced by the differentiation of mantle-derived magmatism at the continental rift in extensional setting subsequent to a major collision during the Permo-Triassic Songrim orogeny. The results provide robust evodence to consider the Imjingang belt as an extension of the the Qinling-Dabie-Sulu belt between the North and South China blocks.

Origin of the Eocene Gyeongju A-type Granite, SE Korea: Implication for the High Fluorine Contents (에오세 경주 A-형 화강암의 기원: 높은 불소 함량에 대한 고찰)

  • Myeong, Bora;Kim, Jung-Hoon;Woo, Hyeong-Dong;Jang, Yun Deuk
    • Economic and Environmental Geology
    • /
    • v.51 no.5
    • /
    • pp.439-453
    • /
    • 2018
  • The Eocene Gyeongju granitoids in SE Korea are alkali feldspar granite (AGR), biotite granite (BTGR), and hornblende biotite granodiorite (HBGD) along Yangsan fault and Ulsan fault. According to their geochemical characteristics, these granitoids are classified as A-type (AGR) and I-type (BTGR and HBGD) granitoids, and regarded that were derived from same parental magma in upper mantle. The hornblende and biotite of AGR as an interstitial phase indicate that influx of F-rich fluid during the crystallization of AGR magma. AGR is enriched LILE (except Sr and Ba) and LREE that indicate the influences for subduction released fluids. The highest HFSE contents and zircon saturation temperature of AGR among the Eocene Gyeongju granitoids may indicate that it was affected by partial melting rather than magma fractionation. These characteristics may represent that the high F contents of AGR was affected by F-rich fluid derived from the subducted slab and partial melting. It corresponds with the results of the REE modeling and the dehydrated fluid component (Ba/Th) modeling showing that AGR (A-type) was formed by the partial melting of BTGR (I-type) with the continual influx of F-rich fluid derived from the subducted slab.

Glass Inclusions in Quartz Phenocrysts of Tuff from Sunshin Au Mining Area, Haenam, Jeonnam. (전남 해남의 순신 금광산 지역에 산출하는 응회질암에 포획된 유리포유물)

  • Lee, Seung-Yeol;Yang, Kyoung-Hee;Jeon, Byung-Geun;Bak, Gil;Koh, Sang-Mo;Seo, Jeong-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.337-348
    • /
    • 2009
  • Clear and homogeneous glass inclusions are well preserved at the rim of the quartz phenocrysts of tuff from Sunshin epithermal Au deposit, Haenam, although the host rocks experienced extensive silicification and argillic alteration. Glass inclusion vary in size from $5\;{\mu}m$ to larger than $200\;{\mu}m$ consisting of glass(60~80 vol%) + vapor bubble(15~30 vol%) $\pm$ daughter crystals(<10 vol%). Most of glass inclusions are cubic to rectangular in shape, indicating that the host quartz grew in the stability field of $\beta$-quartz. All the glass inclusions appear to be primary. Glass inclusions are composed of highly evolved high-K calc-alkaline rhyolites, which can represent the final liquidus phase of the magma system. The $Au_2O_3$ concentration (<0.30 wt%) is trivial in the glass, indicating there was no enrichment in the final residual melt. Textural characteristics suggest that magma was water-saturated shortly before or during the eruption. $H_2O$ content of the glass (ca. 2-4 wt%) suggests a water saturation pressure($P_{H2O}$) of about 300-900 bars. This pressure implies a minimum depth of 0.8-2.5 km for the magma chamber.

Geochemistry and Petrogenesis of the Granitic Rocks in the Vicinity of the Mt. Sorak (설악산 부근의 화강암류에 대한 지구화학 및 성인)

  • Kyoung-Won Min;Sung-Bum Kim
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.35-51
    • /
    • 1996
  • The granitic rocks in the vicinity of the Mt. Sorak, the northeastern part of the NE-SW elongated Mesozoic granitic batholith in the Kyeonggi massif, consist of granodiorite, biotite granite, two-mica granite and alkali feldspar granite. Variations In major and most trace elemental abundances show a typical differentiation trend in a granitic magma. Granitic rocks all display a calc-alkaline trend in the AFM diagram. Also, In the ACF diagram discriminating between I- and S-type granitic rocks, granodiorite and most biotite granite in the southeastern area represent I-type and magnetite-series characteristics, while most biotire granite and two-mica granite in the northwestern area exhibit S-type and ilmenite-series ones.According to recent studies of the granitle rocks In the Inje-Hongcheon district. all ihe granitic rocks distributed in the northeastern part of the Kyeonggi massif have been classified as late Triassic to early Jurassic Daebo granite. With reference of the formerly published ages, an age oi $125.6{\pm}4.4$ Ma calculated by the slope in the plot of $^{87}Rb/^{86}Sr-^{87}Sr/^{86}Sr$ for the biotite granite samples from the southeastern area is inferred as an emplacement age for the granitic rocks in the vicinity of the Mt. Sorak. On the basis of elemental variations and Sr isotope compositions, an possible evolutional process for the granitic magmas in this area is suggested. The primary magma of I-type and magnetite-series generated about 125 Ma by partial melting of igneous originated crustal materials, might be emplaced and evolved through fractional crystallization, convection and assimilation of the surrounding Precambrian metasediments to become S-type and ilmenlte-serles in the outer area, and then solidified to granodiorite, biotite granite and two-mica granite.At the latest stage, the evolved hydrothermal solution altered the formerly solidified biotite granite to alkali feldspar granite and probably later local igneous activities affected the alkali feldspar granite again.

  • PDF

Interpretation for Variations in Mineral Contents in Volcanic Rocks Related to the Yangsan Caldera (양산 칼데라에 관련되는 화산암류에서 광물함량 변화의 해석)

  • Hwang, Sang-Koo;Kim, Se-Hyeon;Jeong, Seong-Wook
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.166-178
    • /
    • 2008
  • The modal analyses on the phenocryst phases and the normative mineralogies from the bulk chemical analyses record that the volcanic rocks related to the Yangsan caldera might been derived from compositionally zoned magma. The volcanic rocks show linearly continuous mineralogical gradients, not only totally in the relations between $SiO_2$ and proportion of phenocryst content, but also within each rock unit in the relations between total phenocryst content and the proportion, Q-Ab-Or and Q-An(Ab-Or) diagrams. The roughly gradational modal variations of the phenocryst phases are shown upward within each rock unit. However, the contents and proportion of the phenocrysts in the Yangsan Tuff and the Hwajeri Formation represent the zigzaggedly undulatory variations. The continuous mineralogical gradients without large gaps define a large zoned magma system in the pre-eruptive, later precollapse and postcollapse magma chambers respectively. The zigzagged variations reflect the intermittent eruptive pulses representing any time gaps.

Petrogenetic Study on the Foliated Granitoids in the Chonju and the Sunchang Area(I) -In the Light of Petrochemical Properties- (전주 및 순창지역에 분포하는 엽리상화강암류의 성인에 대한 연구(I) - 암석지화학적 특성을 중심으로 -)

  • Na, Choon-Ki;Lee, In-Sung;Chung, Jae-Il
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.480-492
    • /
    • 1997
  • In order to understand the processes involved in the petrogenesis and the differentiation of the primary magma spectrum, a petrological and geochemical properties were investigated for the Chonju and the Sunchang foliated granites, which are located in the southwestern part of the Okchon zone and extends up to the northwestern boundary of the Ryongnam massif as two subparallel batholiths. Major element analyses show that the Chonju and Sunchang foliated granites are classified petrologically into a weakly to strongly peraluminous or calc-alkaline, but do not fit neatly into either of the I/S-type or magnetite/ilmenite-series classification schemes for granites, although the I-type and magnetite-series characteristics seem to be predominant based on the major element chemistry. In normative compositions, the Chonju granite is petrographically evolved from granodiorite to granite, whereas the Sunchang granite is from granodiorite to quartz monzodiorite. It seems to suggest a difference of the magmatic evolution processes such as crustal assimilation and/or fractional crystallization in magma. The REE patterns of both batholiths show high similarity and strongly fractionated REE distributions which show high $(Ce/Yb)_N$ ratios and little or no Eu anomalies. These REE patterns correspond broadly to those seen in the pre-Cretaceous granitoids of Korea. Apparently, the evidences obtained from the bulk compositions strongly suggest that the two foliated granitoids were formed by partial meltings of a relatively restricted and similar, may be common, source material which contains a continental crust component having an igneous composition, and have undergone a similar magmatic differentiation processes.

  • PDF