Browse > Article
http://dx.doi.org/10.7854/JPSK.2017.26.2.113

Geochemistry and Tectonic Implications of Triassic Bojangsan Trachyte in the Southern Margin of the Imjingang Belt, Korea  

Hwang, Sang Koo (Department of Earth and Environmental Science, Andong National University)
Ahn, Ung San (World Heritage Office, Jeju Special Self-Governing Provincial Government)
Publication Information
The Journal of the Petrological Society of Korea / v.26, no.2, 2017 , pp. 113-125 More about this Journal
Abstract
We investigates geochemical and tectonic characteristics for the Triassic Bojangsan trachyte in the southern margin of the Imjingang belt. The geochemical signatures of the thracyte are characterized by enrichments of REE and HFS, and show no Nb trough, suggesting that would not experience arc magmatic processes involving continental crustal materials. The trachyte reveals within-plate setting in tectonic discrimination diagrams using immobile HFS Nb and Y elements. And the trachyte shows typical signatures of A-type volcanic rocks with high Ga abundance and is classified as A1-type volcanic rocks rich in Nb. The geochemical signatures suggest that the trachyte was produced by the differentiation of mantle-derived magmatism at the continental rift in extensional setting subsequent to a major collision during the Permo-Triassic Songrim orogeny. The results provide robust evodence to consider the Imjingang belt as an extension of the the Qinling-Dabie-Sulu belt between the North and South China blocks.
Keywords
Imjingang belt; Bojangsan trachyte; geochemical signatures; continental rift; extensional setting;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bohrson, W.A. and Reid, M.R., 1997, Genesis of peralkaline volcanic rocks in an ocean island setting by crust melting and open-system processes: Socorro Island, Mexico. Journal of Petrology, 38, 1137-1166.   DOI
2 Cabanis, B. and Lecolle, M. 1989. Le diagramme La/10Y/15-Nb/8: un outil pour la discrimination des series volcaniques et la mise en evidence des processus de melange et/ou de contamination crustale. C. R. Acad. Sci. Ser. II A Sci. Terre Planetes 309: 2023-2029.
3 Chen, J.F., Xie, Z., Li, H.M., Zhang, X.D., Zhou, T.X., Park, Y.S., Ahn, K.S., Chen, D.G., and Zhang, X., 2003, U-Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane, China. Geochemical Journal, 37, 35-46.   DOI
4 Cho, D.-L., 2007, Chronostratigraphy of the Imjingang belt. In: Kee et al.(Eds.) Tectonic Correlation of Major Crustal Units and Construction of Geoscience of Northeast Asia, GP2007-004-2007(1), Institute of Geoscience and Mineral Resources, 63-78 (in Korean).
5 Cho, D.-L., Kwon, S-T., Jeon, E.-Y., and Armstrong, R., 2001. SHRIMP U-Pb zircon geochronology of an amphibolite and a paragneiss from the Samgot unit, Yeoncheon Complex in the Imjingang belt, Korea: tectonic implication. Geological Socciety of Korea, Abstract, 56, p.89.
6 Cho, D.-L., Lee, S.R., and Armstrong, R., 2008, Termination of the Permo-Triassic Songrim (Indosinian) orogeny in the Ogcheon belt, South Korea: Occurrence of ca. 220 Ma post-orogenic alkali granites and their tectonic implications. Lithos, 105, 191-200.   DOI
7 Cho, D.-R., Kwon, S.-T., Jeon, E.Y., and Armstrong, R., 2005, SHRIMP U-Pb zircon ages of metamorphic rocks from the Samgot unit, Yeoncheon complex in the Imjingang belt, Korea: Implications for the phanerozoic tectonics of East Asia. Abstract Program, 37, Geological Society of America, p.388.
8 Barbarin, B., 1999, A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46, 605-626.   DOI
9 Liegeois, J.-P., Navez, J., Hertogen, J., and Black, R., 1998, Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos, 45, 1-28.   DOI
10 Oh, C.W., Kim, S.W., Choi, S.J., Zhai, M., Guo, J., and Sajeev, K., 2005, First finding of eclogites facies metamorphic event in South Korea and its correlation with the Dabie-Sulu collision belt in China. Journal of Geology, 113, 226-232.   DOI
11 Oh, C.W., Kim, S.W., and Williams, I,S., 2006, Spinel granulite in Odesan area, South Korea: tectonic implications for the collision between the North and South China blocks. Lithos, 92, 557-575.   DOI
12 Pearce, J.A., Harris, N.B.W., and Tindle, A.G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983.   DOI
13 Peccerillo, A., Barerio, M.R., Yirgu, G., Ayalew, D., Barbieri, M., and Wu, T.W., 2003, Relationship between mafic and peralkaline felsic magmatism in continental rift settigns: a petrological, geochemical and isotopic study of the Gedemsa Volcano, Central Ethiopian Rift. Journal of Petrology, 44, 2003-2032.   DOI
14 Peng, P., Zhai, M., Guo, J., Zhang, H., and Zhang, Y., 2008, Petrogenesis of Triassic postcollisional syenite plutons in the Sino-Korean craton: an example from North Korea. Geological Magazine 145, 637-647.
15 Qian, Q., et al., 2003, Mesozoic high Ba-Sr granitoids from North China: geochemical characteristics and geological implications. Terra Nova 15, 272-278.   DOI
16 Sun, S.S. and McDonough, W.F., 1989, Chemical and isotopic systematic of oceonic basalt: implication for mantle composition and process. In: Saunders, A.D., Norry, M.J. (Eds), Magmatism in the Oceonic Basins. Special Publication, Geological Society of London, 313-346.
17 Ree, J.-H., Cho, M., Kwon, S.-T., and Nakamura, E., 1996, Possible eastward extension of Chinese collision belt in South Korea: the Imjingang belt. Geology, 24, 1071-1074.   DOI
18 Ree, J.-H., Kwon, S.-H., Park, Y., Kwon, S.-T., and Park, S.-H., 2001, pretectonic and post-tectonic emplacements of the granitoids in the south central Okchon belt, South Korea: implications for the timing of strikeslip shearing. Tectonics, 20, 850-867.   DOI
19 Seo, J., Choi, S.-G., and Oh, C.W., 2010, Petrology, geochemistry, and geochronology of the post-collisional Triassic mangerite and syenite in the Gwangcheon area, Hongseong Belt, South Korea. Gondwana Research 18, 479-496.   DOI
20 Tchameni, R., Mezger, K., Nsifa, N.E., and Pouclet, A., 2001, Crustal origin of Early Proterozoic syenites in the Congo Craton (Ntem Complex), South Cameroon. Lithos, 57, 23-42.   DOI
21 Turner, S., Sandiford, M., and Foden, J., 1992, Some geodynamic and compositional constraints on "postorogenic" magmatism. Geology, 20, 931-934.   DOI
22 Tura, T., Deniel, C., and Mazzuoli, R., 1998, Crustal control in the genesis of Plio-Quaternary bimodal magmatism of the Main Ethiopian Rift(MER): geochemical and isotopic(Sr Nd Pb) evidence. Chemical Geology, 155, 201-231.
23 Whalen, J.B., Currie, K.L., and Chappell, B.W., 1987, Atype granites: geochemical characteristics, discrimination and petrogenisis. Contributions to Mineralogy and Petrology, 95, 405-419.
24 Chough, S.K., Kwon, S.T., Ree, J.-H., and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth Science Review, 52, 175-235.   DOI
25 Cho, M., 2001. A continuation of Chinese ultrahigh-pressure belt in Korea: evidence from ion microprobe U-Pb zircon ages. Gondwana Research, 4, 708.   DOI
26 Cho, M. and Kim, H., 2005, Metamorphic evolution of the Ogcheon belt, Korea: a review and new age constraints. International Geology Review, 47, 41-57.   DOI
27 Choi, S.G., Rajesh, V.J., Seo, J., Park, J.W., Oh, C.W., Pak, S.J., and Kim, S.W., 2009, Petrology, geochronology and tectonic implications of Mesozoic high Ba-Sr granites in the Haemi area, Hongseong Belt, South Korea. Island Arc 18, 266-281.
28 Collins, W.J., Beams, S.D., White, A.J., and Chappell, B.W., 1982, Nature and origin of A-type granite with particular reference to Southeastern Australian. Contributions to Mineralogy and Petrology, 8, 189-200.
29 Eby, G.N., 1990, The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26, 115-134.   DOI
30 Eby, G.N., 1992, Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 20, 641-644.   DOI
31 Wu, F.-Y., Sun, D.-Y., Li, H., Jahn, B.-M., and Wilde, S., 2002, A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical geology, 187, 143-173.   DOI
32 Williams, I.S., Cho, D.L., and Kim, S.W., 2009, Geochronology, and geochemical and Nd-Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, South Korea: constraints on Triassic post-collisional magmatism. Lithos 107, 239-256.   DOI
33 Winchester, J.A. and Floyd, P.A., 1977, Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343.   DOI
34 Wood, D.A., 1980, The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crust contamination of basaltic lavas of the British Tertiary volcanic provinces. Earth and Planetary Science Letters, 50, 11-30.   DOI
35 Yang, J.H., Chung, S.L., Wilde, S.A., Wu, F.Y., Chu, M.F., Lo, C.H., and Fan, H.R., 2005, Petrogenesis of post-orogenic syenites in the Sulu orogenic belt, East China: geochronological, geochemical and Nd-Sr isotopic evidence. Chemical Geology, 214, 99-125.   DOI
36 Yang, J.H., Wu, F.Y., Wilde, S.A., and Liu, X.M., 2007, Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liadong Peninsula, North China Craton. Chemical Geology, 242, 155-175.   DOI
37 Yin, A. and Nie, S., 1993, An indentation model for the North and South China collision and the development of the Tan-Lu and Honam fault systems, eastern Asia. Tectonics 12, 801-813.   DOI
38 Yu, K.M., Kwon, Y.I., and Chun, H.Y., 1992, Stratigraphy and mineral composition of sandstones from the Daedong Group, Yeoncheon area. Journal of Geological Society of Korea, 28, 152-166 (in Korean with English abstract).
39 Faure, M., Lin, W., Le Breton, N., 2001, Where is the North China-South China block boundary in eastern China? Geology, 29, 119-122.   DOI
40 Ernst, W.G. and Liou, J.G., 1995, Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and Franciscan metamorphic belts. Geology, 23, 353-356.   DOI
41 Fowler, M.B., Henney, P.J., Rogers, G., Watt, G.R., and Friend, C.R.L., 2001, Petrogenesis of high Ba-Sr granites: the Rogart pluton, Sutherland. Journal of the Geological Society of London 158, 521-534.   DOI
42 Kee, W.-S., Cho, D.-L., Kim, B.C., and Jin, K., 2005, Geological report of the Pocheon Sheet. Korea Institute of Geoscience and Mineral Resources, 66p.
43 Hwang, J.H. and Kihm, Y.H., 2007, Geological report of the Jipori Sheet. Korea Institute of Geoscience and Mineral Resources, 54p.
44 Hwang, S.K., An, Y.M., and Yi, K., 2011, SHRIMP age datings and volcanism times of the igneous rocks in the Cheolwon Basin, Korea. Journal of Petrological Society of Korea, 20, 231-241 (in Korean with English abstract).   DOI
45 Hwang, S.K., Kee, W.-S., and Yi, K., 2017, SHRIMP zircon dating and stratigraphic implications of the Bojangsan Trachyte in the Imjingang Belt, Korea. Journal of Petrological Society of Korea, 53, 423-432 (in Korean with English abstract).   DOI
46 Kee, W.-S., Lim, S.-B., Kim, H., Hwang, S.K., Song, K.-Y., and Kihm, Y.-B., 2008, Geological report of the Yeoncheon Sheet. Korea Institute of Geoscience and Mineral Resources, 83p.
47 Kim, J.N., Ree, J.-H., Kwon, S.T., Park, Y., Choi, S.-J., and Cheong, C.-S., 2000, The Kyeonggi shear zone of the central Korean peninsula: Late orogenic imprint of the North and South China collision. Journal of Geology, 108, 469-478.   DOI
48 Kim, J., Yi, K., Jeong, Y.-J., and Cheong, C.-S., 2011a. Geochronological and geochemical constraints on the petrogenesis of Mesozoic high-K granitoids in the central Korean peninsula. Gondwana Research. doi:10.1016/j.gr.2010.12.005.   DOI
49 Kim, S.W., Kwon, S., Koh, H.J., Yi, K., Jeong, Y.-J., and Santosh, M., 2011b, Geotectonic framework of Permo-Triassic magmatism within the Korean Peninsula. Gondwana Research, 20, 865-889.   DOI
50 Kim, S.W., Oh, C.H., Williams, I.S., Rubatto, D., Ryu, I.C., Rajeshi, V.J., Kim, C.-B., Guo, J., and Zhai, M., 2006, Phanerozoic high-pressure eclogites and intermediatepressure granulite facies metamorphism in the Gyeonggi massif, South Korea: implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos, 92, 357-377.   DOI
51 Kwon, S.-T. and Lee, J.-H., 1997, A note on the age of the Honam shear zone. Journal of the Geological Society of Korea, 33, 183-188 (in Korean with English abstract).
52 Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., and Zanettin, B., 1986, A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745-750.   DOI
53 Le Maitre, R.W., 1984, A proposal by the IUGS Subcommission on the Systematics of Igneous Rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram. American Journal of Earth Sciences, 31, 243-255.   DOI
54 Lee, D.S., 1987, Geology of Korea. Kyohak-sa, Seoul, 514p.
55 Lee, S.R., Cho, M., Yi, K.-W., and Stern, R., 2000, Early Proterozoic granulites in central Korea: tectonic correlation with Chinese cratons. J. Geol. 108, 729-738.   DOI
56 Lee, S.R., Cho, M., Hwang, J.H., Lee, B.-J., Kim, Y.-B., and Kim, J.C., 2001, Crustal evolution of the Gyeonggi massif, South Korea: Nd isotopic evidence and implications for continental growths of East Asia. Precambrian Research.
57 Li, X.-H., Li, Z.X., Zhou, H., Liu, Y., and Pinny, P.D., 2002, U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcnaic rocks in the Kangdian Rift of South China: implications for the initial rifting of Rodinia. Precambrian Research, 113, 135-154.   DOI
58 Li, Z.X., 1994. Collision between the North and South China blocks: a crustal-detachment model for suturing in the region east of the Tanlu fault. Geology, 22, 739-742.   DOI