• Title/Summary/Keyword: A shell

Search Result 4,639, Processing Time 0.03 seconds

FG-based computational fracture of frequency up-conversion for bistablity of rotating shell: An effective numerical scheme

  • Hussain, Muzamal
    • Advances in concrete construction
    • /
    • v.13 no.5
    • /
    • pp.367-376
    • /
    • 2022
  • Theoretical study of vibration distinctiveness of rotating cylindrical are examined for three volume fraction laws viz.: polynomial, exponential and trigonometric. These laws control functionally graded material composition in the shell radius direction. Functionally graded materials are controlled from two or more materials. In practice functionally graded material comprised of two constituent materials is used to form a cylindrical shell. For the current shell problem stainless steel and nickel are used for the shell structure. A functionally graded cylindrical shell is sanctioned into two types by interchanging order of constituent materials from inner and outer side for Type I and Type II cylindrical shell arrangement. Fabric composition of a functionally graded material in a shell thickness direction is controlled by volume fraction law. Variation of power law exponent brings change in frequency values. Influence of this physical change is investigated to evade future complications. This procedure is capable to cater any boundary condition by changing the axial wave number. But for simplicity, numerical results have been evaluated for clamped- simply supported rotating cylindrical shells. It has been observed from these results that shell frequency is bifurcated into two parts: one is related to the backward wave and other with forward wave. It is concluded that the value of backward frequency is some bit higher than that forward frequency. Influence of volume fraction laws have been examined on shell frequencies. Backward and forward frequency curves for a volume fraction law are upper than those related to two other volume fraction laws. The results generated furnish the evidence regarding applicability of present shell model and also verified by earlier published literature.

Experimental Study on Heat Transfer and Pressure Drop Characteristics for Single-Phase Flow in Plate and Shell Heat Exchangers. (Plate and Shell 열교환기의 단상유동 열전달 및 압력강하 특성에 관한 실험적 연구)

  • 서무교;김영수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.422-429
    • /
    • 2000
  • Plate and shell heat exchanger(P&SHE) is widely applied as evaporators or condensers in the refrigeration and air conditioning systems for their high efficiency and compactness. In order to set up the database for the design of the P&SHE, heat transfer and pressure drop characteristics for single phase flow of water in a plate & shell heat exchanger are experimentally investigated in this study. Single phase heat transfer coefficients were measured for turbulent water flow in a plate and shell heat exchangers by Wilson plot method. The shell side heat transfer resistance was varied and the overall heat transfer coefficients were measured. The single-phase heat transfer coefficients in a plate side were obtained by Wilson plot method. Single-phase heat transfer correlations based on projected heat transfer area and friction factor correlations have been proposed for single phase flow in a plate and shell heat exchanger.

  • PDF

Experimental dynamic performance of an Aluminium-MRE shallow shell

  • Zhang, Jiawei;Yildirim, Tanju;Neupane, Guru Prakash;Tao, Yuechuan;Bingnong, Jiang;Li, Weihua
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.57-64
    • /
    • 2020
  • The nonlinear dynamics of a directly forced clamped-clamped-free-free magneto-rheological elastomer (MRE) sandwich shell has been experimentally investigated. Experiments have been conducted on an aluminium shallow shell (shell A) and an MRE-aluminium sandwich shallow shell with single curvature (shell B). An electrodynamic shaker has been used to directly force shells A and B in the vicinity of their fundamental resonance frequency; a laser displacement sensor has been used to measure the vibration amplitude to construct the frequency-response curves. It was observed that for an aluminium shell (shell A), that at small forcing amplitudes, a weak softening-type nonlinear behaviour was observed, however, at higher forcing amplitudes the nonlinear dynamical behaviour shifted and a strong hardening-type response occurred. For the MRE shell (shell B), the effect of forcing amplitude showed softening at low magnetic fields and hardening for medium magnetic fields; it was also observed the mono-curved MRE sandwich shell changed dynamics to quasiperiodic displacement at some frequencies, from a periodic displacement. The presence of a magnetic field, initial curvature, and forcing amplitude has significant qualitative and quantitative effects on the nonlinear dynamical response of a mono curved MRE sandwich shell.

High Dispersion Line Profiles of the Planetary Nebula NGC 6833 and its Implication

  • Lee, Seong-Jae;Hyung, Siek
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.73.1-73.1
    • /
    • 2010
  • Using the spectroscopic data secured with the Hamilton Echelle Spectrograph attached to a 3-m telescope at the Lick Observatory, we derived the expansion velocities from various line profiles in the 3600 $\AA$ to 10,000 $\AA$ based on the full width at half maximum and double peak of the high dispersion line profiles. The symmetrical shapes of the permitted line profiles indicate that the permitted line zone is symmetrical e.g., a spherical shell or bipolar + torus structures, which might be evidence of relatively recent ejection from the central star. Most other stronger forbidden lines might be coming from a main shell which appears as a bilateral symmetrical morphology, seen in HST and other ground-based telescopic images. The overall expansion velocities of this main shell structure that are responsible for most lines, seem to show the Hubble type expansion, i.e., accelerating shell. The faster expansion velocities of the permitted OII, NII, NIII and perhaps CII lines that do not suit to the Hubble type expansion, imply the existence of a somewhat smaller inner shell inside the outer main shell. We conclude that the nebular shell consists of a swiftly expanding inner shell and an outer normal shell excited by a central star of about 55,000K. The former compact zone appears to be responsible for the permitted C, N, and O lines while the latter extended shell appears to be responsible for H, He, and forbidden lines. We present some evidence that NGC 6833 be a member of the Galactic halo.

  • PDF

A Study on the Flexural Property of Glass Fiber Filled Coextruded Wood Plastic Composites (유리섬유가 충전된 공압출 목재.플라스틱 복합재의 굽힘 특성에 관한 연구)

  • Kim, Birm-June
    • Journal of the Korea Furniture Society
    • /
    • v.24 no.4
    • /
    • pp.379-388
    • /
    • 2013
  • In this study, the effect of various glass fiber (GF) contents in a shell layer and shell thickness changes on the flexural property of coextruded wood plastic composites (WPCs) in combination with three core systems (weak, moderate, and strong) was investigated. GF behaved as an effective reinforcement for the whole coextruded WPCs and GF alignments in the shell layer played an important role in determining the flexural property of the coextruded WPCs. At a given shell thickness, the flexural property of the whole coextruded WPCs was improved with the increase of GF content in shell. For core quality, when the core is weak, increase of GF content in shell led to improved flexural property of the whole composites and increase of shell thickness helped it. On the other hand, when the core is strong, the flexural property of the whole composites showed reduced features at low GF content in shell and increase of shell thickness aggravated it. This approach provides a method for optimizing performance of the coextruded WPCs with various combinations of core-shell structure and properties.

  • PDF

THE DEVELOPMENT OF THE WATER LOADED PRESSURE METHOD FOR MEASURING EGGSHELL QUALITY

  • Kang, C.W.;Nam, K.T.;Olson, O.E.;Carlson, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.6
    • /
    • pp.723-726
    • /
    • 1996
  • A water loaded pressure device using water as the breaking force was developed to evaluate eggshell strength and compared with a dropping ball techniques. Further, relationships of shell thickness and weight of eggs to shell strength were also studied. Values for both of the shell strength measuring methods showed a highly significant correlation (p < 0.001) with shell thickness. The water loaded pressure method had a much higher simple correlation coefficient for shell thickness (r = + 0.786) than the dropping ball method (r = + 0.577). The shell strength measured by the water loaded pressure method appeared not to be correlated to egg weight. On the other hand, the negative sign of the standard partial regression coefficient and the partial regression coefficient of egg weight in the estimated multiple regression equation implied that for a given shell thickness a larger egg tended to have less shell strength than a smaller egg.

Non-axisymmetric dynamic response of buried orthotropic cylindrical shells under moving load

  • Singh, V.P.;Dwivedi, J.P.;Upadhyay, P.C.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.39-51
    • /
    • 1999
  • The dynamic response of buried pipelines has gained considerable importance because these pipelines perform vital role in conducting energy, water, communication and transportation. After realizing the magnitude of damage, and hence, the human uncomfort and the economical losses, researchers have paid sincere attention to this problem. A number of papers have appeared in the past which discuss the different aspects of the problem. This paper presents a theoretical analysis of non-axisymmetric dynamic response of buried orthotropic cylindrical shell subjected to a moving load along the axis of the shell. The orthotropic shell has been buried in a homogeneous, isotropic and elastic medium of infinite extent. A thick shell theory including the effects of rotary inertia and shear deformation has been used. A perfect bond between the shell and the surrounding medium has been assumed. Results have been obtained for very hard (rocky), medium hard and soft soil surrounding the shell. The effects of shell orthotropy have been brought out by varying the non-dimensional orthotropic parameters over a long range. Under these conditions the shell response is studied in axisymmetric mode as well as in the flexural mode. It is observed that the shell response is significantly affected by change in orthotropic parameters and also due to change of response mode. It is observed that axial deformation is large in axisymmetric mode as compared to that in flexural mode.

Oyster Shell Disposal: Potential as a Novel Ecofriendly Antimicrobial Agent for Packaging: a Mini Review

  • Sadeghi, Kambiz;Park, Kitae;Seo, Jongchul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.2
    • /
    • pp.57-62
    • /
    • 2019
  • The management of oyster shell disposal is an ongoing challenge in the southern coast of Korea because of continuously dumping the oyster shell in environment. Oyster shell wastes could be a biocidal alternative after calcination using a heat treatment. Calcined oyster shell is normally obtained through thermally conversion of $CaCO_3$ (main component in oyster shell (96%)) into CaO. This study provides a brief overview of oyster shell disposal and its potential as an antimicrobial agent with a focus on calcination process, antimicrobial mechanisms, and packaging applications.

[Retraction] Preparation of Methyl methacrylate/styrene Core-shell Latex by Emulsion Polymerization ([논문 철회] 유화중합에 의한 Methyl methacrylate/styrene계 Core-shell 라텍스 입자 제조에 관한 연구)

  • Kang, Don-O;Lee, Nae-Woo;Seul, Soo-Duk;Lee, Sun-Ryong
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.21-30
    • /
    • 2002
  • Core-shell polymers of methyl methacrylate/styrene pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl benzene sulfonate(SDBS) as an emulsifier using ammonium persulfate(APS) as an initiator. The characteristics of these core-shell polymers were evaluated. Core-shell composite latex has the both properties of core and shell components in a particle, where as polymer blonds or copolymers show a combined properties from the physical properties or two homopolymers. This unique behavior of core-shell composite latex can be used in many industrial fields. However, in preparation of core-shell composite latex, several unexpected phenomina are observed, such as, particle coagulation, low degree of polymerization, and formation of new particles during shell polymerization. To solve the disadvantages, we studied the effects of surfactant concentrations, initiator concentrations, and reaction temperature on the tore-shell structure or PMMA/PSt and PSt/PMMA. Particle size and particle size distribution were measured by using particle size analyzer, and the morphology of the core-shell composite latex was observed by using transmission electron microscope. Glass transition temperature($T_g$) was also measured by using differential scanning calorimeter. To identify the core-shell structure, pH of the composite latex solutions were measured.

Effect of Shell Structure of Artificial Lightweight Aggregates on the Emission Rate of Absorbed Water (인공경량골재의 표피층 구조가 흡수된 물의 방출속도에 미치는 영향)

  • Kang, Seung-Gu
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.750-754
    • /
    • 2008
  • The artificial aggregates with dense surface layer (shell) was fabricated and the dependence of water emission rate upon the shell structures was studied. The EAF dust containing many flux components and waste white clay with ignition loss of above 48% were used as for liquid phase and gas forming agents during a sintering process respectively. In addition, the shell structure was modified with various processes and the modification effect on water emission rate was analyzed. The pores under $10{\mu}m$ were found in the sintered artificial light aggregates and disappeared by incorporating to a bigger pore during re-sintering. The water emission rate in an initial step depended on a void content of aggregates filled in a bottle rather than a shell structure. But, after 7 days where the water emission of the aggregate with a shell is above 40%, the shell of aggregates suppressed the water emission. The core of aggregates was exposed and most shell was lost when crushed to smaller size so, the ability for suppressing water emission of the crushed aggregates decreased. The activation energy for the water emission was $3.46{\pm}0.25{\times}10^{-1}$J/mol for the most specimens showing that the activation energy is irrelevant to the pore size distribution and shell structure.