This paper focuses on a priori signal to noise ratio (SNR) estimation method for the speech enhancement. There are many researches for speech enhancement with several ambient noise cancellation methods. The method based on spectral subtraction (SS) which is widely used in noise reduction has a trade-off between the performance and the distortion of the signals. So the need of adaptive method like an estimated a priori SNR being able to making a high performance and low distortion is increasing. The decision directed (DD) approach is used to determine a priori SNR in noisy speech signals. A priori SNR is estimated by using only the magnitude components and consequently follows a posteriori SNR with one frame delay. We propose a modified a priori SNR estimator and the weighted rational transfer function for speech enhancement with wind noises. The experimental result shows the performance of our proposed estimator is better Perceptual Evaluation of Speech Quality scores (PESQ, ITU-T P.862) compare to the conventional DD approach-based systems and different noise reduction methods.
The decision directed (DD) approach is widely used to determine a priori SNR from noisy speech signals. In conventional speech enhancement systems with a DD approach, a priori SNR is estimated by using only the magnitude components and consequently follows a posteriori SNR with one frame delay. We propose a phase-dependent two-step a priori SNR estimator based on the minimum mean square error (MMSE) in the log-mel spectral domain so that we can consider both magnitude and phase information, and it can overcome the performance degradation caused by one frame delay. From the experimental results, the proposed estimator is shown to improve the output SNR of enhanced speech signals by 2.3 dB compared to the conventional DD approach-based system.
We propose a novel phase-based method for single-channel speech enhancement to extract and enhance the desired signals in noisy environments by utilizing the phase information. In the method, a phase-dependent a priori signal-to-noise ratio (SNR) is estimated in the log-mel spectral domain to utilize both the magnitude and phase information of input speech signals. The phase-dependent estimator is incorporated into the conventional magnitude-based decision-directed approach that recursively computes the a priori SNR from noisy speech. Additionally, we reduce the performance degradation owing to the one-frame delay of the estimated phase-dependent a priori SNR by using a minimum mean square error (MMSE)-based and maximum a posteriori (MAP)-based estimator. In our speech enhancement experiments, the proposed phase-dependent a priori SNR estimator is shown to improve the output SNR by 2.6 dB for both the MMSE-based and MAP-based estimator cases as compared to a conventional magnitude-based estimator.
본 논문에서는 잡음 환경에서 단일 마이크로폰의 음성 향상에 대한 새로운 기법을 제시했다. 일반적으로 널리 알려진 스펙트럼 차감법에 근거한 음성 향상 기술은 신호 대 잡음비에 따른 스펙트럼 이득으로 표현된다. 대표적인 Ephraim과 Malah의 decision-directed (DD) 추정치는 잡음 구간에서 효율적으로 뮤지컬 잡음을 제거하지만 음성 구간에서는 이전 프레임의 음성 스펙트럼 성분에 더 큰 비중을 두기 때문에 a priori SNR의 프레임 지연이 발생한다. 따라서 DD에 의해 추정된 a priori SNR이 적용된 잡음 제거 이득은 현재 프레임보다 이전 프레임에 영향을 받으므로 음성 전이 구간에서 잡음 제거 성능을 저하시킨다. 본 논문은 DD의 가중치 파라미터에 Sigmoid Type의 함수를 적용하여 계산적으로는 간단하지만 효과적인 음성 향상 알고리즘을 제안한다. 제안된 접근 방식은 DD의 주요 파라미터인 a priori SNR 지연의 문제점을 해결하면서 뮤지컬 잡음 제거에 우수한 DD의 이점은 유지한다. 제안된 알고리즘의 성능은 다양한 잡음 환경에서 ITU-T P.862 Perceptual Evaluation of Speech Quality (PESQ) 와 Mean Opinion Score (MOS). 그리고 음성 스펙트로그램 (Spectrogram)에 의해 평가했고 기존의 DD의 고정된 가중치 파라미터를 사용했을 때 보다 향상된 결과를 나타내었다.
본 논문에서는 여러 개의 마이크를 이용하여 잡음을 제거하는 방법인 공간 필터로 전처리된 신호를 입력으로 하는 음성 왜곡 가중 다채널 위너 필터 (Spatially Preprocessed Speech Distortion Weighted Multi-channel Wiener Filter: SP-SDW-MWF)에 대해 소개하고, 가중치를 결정하는 방법을 제안한다. SP-SDW-MWF는 마이크로폰 어레이를 이용한 잡음 제거 알고리즘으로서 마이크로폰 불일치와 같은 오차에 강인한 것으로 알려져 있다. SP-SDW-MWF는 필터 계수를 최적화할 때 음성 왜곡과 잡음 제거에 대한 기준으로 나누어 가중치를 두고 있다. 이러한 가중치를 결정하기 위해, 본 논문에서는 전력 스펙트럼 밀도 오차를 평가 척도로 사용하여 마이크로폰으로부터 입력된 음성 신호와 잡음의 전력 스펙트럼 밀도의 비 (a priori SNR)를 이용하는 방법을 제안한다. 실험결과에서 나타난 바와 같이 a priori SNR에 따라 가변적인 가중치를 사용하는 것이 고정된 값을 가중치로 사용하는 것보다 향상된 성능을 보임을 알 수 있다.
음성검출기는 이동 통신이나 음성신호처리 등에 매우 중요한 기법으로 사용된다. 일반적인 음성검출방식은 통계적인 모델을 기반으로 하여 likelihood ratio test (LRT)를 하게 된다. 그리고 이 값을 임계값과 비교하여 음성인지 아닌지 판단하게 된다. 본 논문에서는 가우시안 (Gaussian) 분포를 기반으로 하고 uniformly most powerful (UMP) 테스트를 이용하여 새로운 음성검출기법을 제안한다. 새로운 음성검출기법의 결정규칙은 기존 LRT에 기반하여 UMP 테스트를 통해 식을 유도하였다. UMP 테스트를 이용하면, 입력음성에 대한 절대값의 확률 분포를 Rayleigh 분포 형태로 얻을 수 있으며, 이 분포에 따라 최종적으로 음성검출을 하게 된다. 이 새로운 방식의 음성검출기는 기존의 방식에서 필요한 a priori signal-to-noise ratio (SNR) 값을 구하지 않고도 음성 유무를 판단할 수 있다는 장점이 있다. 실제로 다양한 음성검출에 대한 성능 평가결과, 제안된 기법이 기존 방식에 비해 우수한 성능을 나타내었다.
본 논문에서는 비정상 잡음환경에서 음질향상을 위한 비선형 함수와 사전 음성부재 확률을 이용한 최소 통계치(MS) 방법의 잡음전력편의 보상 방법을 제안한다. 비정상 잡음환경에서 잡음전력추정을 위해 최소 통계치 방법이 잘 알려져 있지만, 예측된 잡음전력 추정 값은 실제 잡음 전력 값보다 하향 편의 되는 특성을 나타낸다. 제안한 방법은 비선형 함수를 적용한 적응보상파라미터와 사전 음성부재 확률 값을 혼용하는 잡음전력편의 보상방법이다. 특히, 적응보상 파라미터는 사후 SNR을 이용한 비 선형함수를 적용하여 잡음수준의 증감에 따라 파라미터 값을 조절한다. 또한, 사전 음성부재확률 값이 1로 수렴할 경우, 적응보상파라미터 값은 각 주파수별로 최대치까지 증가하지만, 확률 값이 0에 가까워지면 반대의 특성을 나타낸다. 제안한 알고리즘의 잡음전력추정 및 음질향상의 성능평가를 위해 다양한 종류의 잡음과 비정상적인 극심한 잡음환경을 설정하여 실험하고, 음질향상을 위해 주파수 차감법과 결합하였다. 알고리즘의 성능은 다양한 잡음환경의 신호 대 잡음비 (SNR)와 Itakura-Saito 음질왜곡 평가법을 이용하여 기존 최소 통계치 (MS)방법에 비해 우수한 결과를 나타냈다.
본 논문에서는 최소값 제어 음성 존재 부정확성의 추정기법을 이용한 음성 향상 기법을 제안한다. 기존의 음성 존재 부정확성 추정기법에서는 간단한 a posteriori SNR에 근거하여 프레임, 채널마다 다른 a priori음성 부재 확률값을 결정하여 음성 부재 확률 계산에 적용하였다. 본 논문에서 제안된 알고리즘은 기존 음성 존재 부정확성 추적방법과는 달리 최소값 제어방법을 이용하여 주파수성분별 최소값에 근거한 강인한 a priori음성 부재 확률값 추정방법을 통해 음성 부재 확률에 적용하여 음성을 향상시킨다. 제안된 음성 향상 기법은 ITU-T P.862 perceptual evaluation of speech quality (PESQ)를 이용하여 평가하였고 기존의 음성 존재 부정확성 추적방법보다 향상된 결과를 나타내었다.
This paper analyzes the performance of various single channel speech enhancement algorithms when they are applied to automatic speech recognition (ASR) systems as a preprocessor. The functional modules of speech enhancement systems are first divided into four major modules such as a gain estimator, a noise power spectrum estimator, a priori signal to noise ratio (SNR) estimator, and a speech absence probability (SAP) estimator. We investigate the relationship between speech recognition accuracy and the roles of each module. Simulation results show that the Wiener filter outperforms other gain functions such as minimum mean square error-short time spectral amplitude (MMSE-STSA) and minimum mean square error-log spectral amplitude (MMSE-LSA) estimators when a perfect noise estimator is applied. When the performance of the noise estimator degrades, however, MMSE methods including the decision directed module to estimate a priori SNR and the SAP estimation module helps to improve the performance of the enhancement algorithm for speech recognition systems.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권1호
/
pp.58-78
/
2016
Compressed sensing (CS) possesses the potential benefits for spectrum sensing of wideband signal in cognitive radio. The sparsity of signal in frequency domain denotes the number of occupied channels for spectrum sensing. This paper presents a scheme of adaptively adjusting the number of compressed measurements to reduce the unnecessary computational complexity when priori information about the sparsity of signal cannot be acquired. Firstly, a method of sparsity estimation is introduced because the sparsity of signal is not available in some cognitive radio environments, and the relationship between the amount of used data and estimation accuracy is discussed. Then the SNR of the compressed signal is derived in the closed form. Based on the SNR of the compressed signal and estimated sparsity, an adaptive algorithm of adjusting the number of compressed measurements is proposed. Finally, some simulations are performed, and the results illustrate that the simulations agree with theoretical analysis, which prove the effectiveness of the proposed adaptive adjusting of compressed measurements.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.