• 제목/요약/키워드: A method of settlement predict

Search Result 68, Processing Time 0.029 seconds

Consolidation Behaviour of Dredged Clay Ground Improved by Horizontal Drain Method (수평배수공법에 의해 개량된 준설점토지반의 압밀거동에 관한 연구)

  • 김형주;원명수
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.137-146
    • /
    • 1997
  • In this study, a large consolidation test was carried out to estimate the consolidation behaviour of dredged clay ground improved by horizontal drain using plastic board drain with a vacuum pressure. The test results were analyzed by a numerical simulation using potential consolidation theory applied to a hollow cylinder. The rapid decreases in pore pressure and the drain speed in the plastic board indicate that the consolidation occurred quickly after the vacuum state was applied to the test soil. According to the numerical analysis obtained by applying the linear potential consolidation theory to a clay hollow cylinder with external radial drainage, the pore pressure is affected by the strain and the permeability of the soil rather than by the diffusion types. Therefore, measured surface settlement agreed with the numerical solution at the point where consolidation pressure increasing rate u: -0.5. Also the behaviour of the clay layer settlement in the place where the drain was installed was similar to that shown in Barron's consolidation theory. Finally, the design and construction procedure including the selection of the appropriate arrangement of horizontal drains were discussed based on the results of the laboratory tutsts. It is also shown that the potential consolidation theory make it possible to predict consolidation behaviour in the field using horizontal drains exactly.

  • PDF

A Study on the Bearing Capacity characteristics of Stone column by Numerical Analysis (수치해석에 의한 쇄석말뚝의 지지력 특성 고찰)

  • Chun, Byung-Sik;Kim, Baek-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.90-99
    • /
    • 2004
  • Stone column is one of the soft ground improvement method, which enhances ground conditions through ground water draining, settlement reducing and bearing capacity increasing complexly by using crushed stone instead of sand in general vertical drain methods. In recent, general construction material, sand is in short of supply, because of the unbalance of demand and supply. Also, the bearing capacity improving effect of stone column method is needed in many cases so the bearing capacity estimation is considered as important point. Nevertheless, adequate estimation methods to predict bearing capacity of stone column considering stone column and improving ground behavior reciprocally is not yet prepared. To contribute this situation, bearing capacity behavior of stone column were simulated as numerically on various property cases of crushed stone and surrounded ground. Through the numerical analysis of simulation results, bearing capacity behavior prediction formula was suggested. This formula was verified by comparing the prediction result with in situ test.

  • PDF

Prediction of fault zone ahead of tunnel face using x-Rs control chart analysis for crown settlement (천단변위의 x-Rs 관리도 분석을 이용한 터널 막장 전방 단층대 예측)

  • Yun, Hyun-Seok;Seo, Yong-Seok;Kim, Kwang-Yeom
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.361-372
    • /
    • 2014
  • A measurement of tunnel displacement plays an important role for stability analysis and prediction of possible fault zone ahead of tunnel face. In this study, we evaluated characteristics of tunnel behaviour due to the existence and orientation of fault zone based on 3-dimensional finite element numerical analysis. The crown settlement representing tunnel behaviour is acquired at 5 m away from tunnel face in combination with x-Rs control chart analysis based on statistics for trend line and L/C (longitudinal/crown displacement) ratio in order to propose risk management method for fault zone. As a result, x-Rs control chart analysis can enable to predict fault zone in terms of existence and orientation in tunnelling.

Construction Stage Analysis of Structure Settlement Using Underpinning (언더피닝 공법을 이용한 구조물 침하에 대한 시공 단계 해석)

  • Lee, Jonghyop;Heo, Seungjin;Ok, Suyeol;Lim, Yunmook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.131-138
    • /
    • 2012
  • This paper aims to present accurately analytical modeling method for underpinning using uncertainty reduction, obtained from comparison between numerical analysis and Site measuring data during construction and service stages. Combination of various conditions should be considered for using numerical analysis to predict the behavior of the structure accurately, even though complexly considered the conditions, real construction should be secured the stability by applying the actual instrument measurement data because predicted results are including the considerable uncertainty. In order to secure the stability during construction, the real time instrument measurements together with numerical analysis results performed before construction state are complementary used actively. From the results of this study, the significant settlements are occurred not only in underpass structure of adjacent excavation area but also in the permanent steel pipe structures were analyzed. From the site measurement results of underpass settlement, the settlements are occurred in every stages of excavation, furthermore observed tendency is asymmetrical excavation patterns are settled more than symmetrical excavation patterns. The essential consideration points for numerical analysis are construction sequence, the direction of the existing facilities, the methods of elements modeling, the applied factors for nature of material and different results would be occurred depending upon inputting the above factors.

Axisymmetric Nonlinear Consolidation Analysis for Drainage-installed Deposit Considering Secondary Compression (배수재가 설치된 연약지반의 2차압축을 고려한 축대칭 비선형 압밀해석)

  • Kim Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.133-140
    • /
    • 2005
  • In order to accelerate the rate of consolidation settlement and gain a required shear strength for a given soft clay deposit, vertical drain method combined with a preloading technique has been widely applied. In this paper, a theory of axisymmetric nonlinear consolidation fer drainage-installed deposit, which considers secondary compression (or creep) during primary consolidation, as well as the variations of compressibility and permeability during the consolidation process, has been developed. A computer program named AXICON based on Hypothesis B fur the analysis of axisymmetric nonlinear consolidation was developed by adopting finite difference method. The results of AS(ICON were compared with Hansbo's solution based on Hypothesis A, as well as in-situ settlements and pore pressures measured in test embankment of Ska-Edeby. The results indicated that Hypothesis A usually underestimated the in-situ settlement and Hypothesis B was considered to be logically correct. It was also shown that one may able to appropriately predict the real in-situ behaviors using the proposed program.

A Study on Characteristic of Sedimentation-Consolidation Conduct for Dredged Soil through Geo-Centrifuge Test (원심모형실험을 이용한 준설토의 침강압밀 거동 특성)

  • Park, Hyunchul;Kang, Hongsig;Sun, Seokyoun;Park, Jongseo;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.59-65
    • /
    • 2017
  • The costal reclamation construction is for making reclaimed land by dredging marine clay with seawater, and then bringing the dredged soil into the reclaimed land. During the process, the dredged soil in the reclaimed land undergoes the sedimentation-consolidation process. Among the processes, the consolidation is a very critical factor when planning reclaimed land because of its requiring time and settlement. In order to predict the requiring time and settlement, the Column test, which was suggested by Yano, has been usually used in the nation. However, the test method needs a very long time to identify the characteristic of sedimentation-consolidation of dredged soil. Therefore, in this study, in order to supplement the weakness of the Column test which needs such a long time, and in order to identify the characteristic of the sedimentation-consolidation for dredged soil in a short time, the Geo-centrifuge test was examined as an alternative method. The result considered that Geo-centrifuge test would be useful to identify the characteristic of sedimentation-consolidation for dredged soil efficiently.

Prediction of Deformation Behavior of a Shallow NATM Tunnel by Strain Softening Analysis (연화모델을 이용한 저토피 NATM 터널의 변형거동의 예측)

  • Lee, Jae-Ho;Shinich, Akutagawa;Kim, Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.9
    • /
    • pp.17-28
    • /
    • 2007
  • Urban tunnels are usually important in terms of prediction and control of surface settlement, gradient and ground displacement. This paper has studied the application of strain softening analysis to predict deformation behavior of an urban NATM tunnel. The applied strain softening model considered the reduction of shear stiffness and strength parameter after yielding with strain softening effects of a given material. Measurements of surface subsidence and ground displacement were adopted to monitor the ground behavior resulting from the tunneling and to modify tunnel design. The numerical analysis results produced a strain distribution, deformational mechanism and surface settlement profile, which are in good agreement with the results of case study. The approach of strain softening modeling is expected to be a good prediction method on the ground displacement associated with NATM tunneling at shallow depth and soft ground.

A Prediction of Long-Term Settlement in Large Reclamated Sites Using Laboratory Consolidation Tests and GIS Techniques (실내압밀시험과 GIS 기법을 이용한 대규모 매립지역의 장기침하량 예측)

  • Park, Sa-Won;Kim, Hong-Taek;Park, Sung-Won;Baek, Seung-Cheol;Park, Sang-Kwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.5-19
    • /
    • 2006
  • The secondary consolidation settlement of soft clay is generally very little compared to the total settlement and occurs very slowly during long-term period. However the secondary consolidation settlement is comparatively large amount in organic and heavily compressed clay and is a very important engineering factor. In order to reduce residual settlements in reclaimed soft ground, the preloading method is often used. In this study, in order to determine reasonable long-term settlements of large reclaimed site, laboratory incremental loading consolidation tests and surcharging consolidation tests are performed. Sampling was done at Incheon area of west coast and Gwangyang area of south coast in Korea. The characteristics of secondary consolidation have obtained through laboratory tests and analyzed systematically to predict long-term settlements. Additionally, the location data and laboratory test results are correlated by using GIS(geographic information system). The secondary consolidation settlement of the site was predicted based on D/B and the operation technique and estimation technique of space of GIS.

  • PDF

Stochastic analysis for uncertain deformation of foundations in permafrost regions

  • Wang, Tao;Zhou, Guoqing;Wang, Jianzhou;Zhao, Xiaodong;Yin, Leijian
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.589-600
    • /
    • 2018
  • For foundations in permafrost regions, the displacement characteristics are uncertain because of the randomness of temperature characteristics and mechanical parameters, which make the structural system have an unexpected deviation and unpredictability. It will affect the safety of design and construction. In this paper, we consider the randomness of temperature characteristics and mechanical parameters. A stochastic analysis model for the uncertain displacement characteristic of foundations is presented, and the stochastic coupling program is compiled by Matrix Laboratory (MATLAB) software. The stochastic displacement fields of an embankment in a permafrost region are obtained and analyzed by Neumann stochastic finite element method (NSFEM). The results provide a new way to predict the deformation characteristics of foundations in permafrost regions, and it shows that the stochastic temperature has a different influence on the stochastic lateral displacement and vertical displacement. Construction disturbance and climate warming lead to three different stages for the mean settlement of characteristic points. For the stochastic settlement characteristic, the standard deviation increases with time, which imply that the results of conventional deterministic analysis may be far from the true value. These results can improve our understanding of the stochastic deformation fields of embankments and provide a theoretical basis for engineering reliability analysis and design in permafrost regions.

Nonlinear interaction analysis of infilled frame-foundation beam-homogeneous soil system

  • Hora, M.S.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.267-289
    • /
    • 2014
  • A proper physical modeling of infilled building frame-foundation beam-soil mass interaction system is needed to predict more realistic and accurate structural behavior under static vertical loading. This is achieved via finite element method considering the superstructure, foundation and soil mass as a single integral compatible structural unit. The physical modelling is achieved via use of finite element method, which requires the use of variety of isoparametric elements with different degrees of freedom. The unbounded domain of the soil mass has been discretized with coupled finite-infinite elements to achieve computational economy. The nonlinearity of soil mass plays an important role in the redistribution of forces in the superstructure. The nonlinear behaviour of the soil mass is modeled using hyperbolic model. The incremental-iterative nonlinear solution algorithm has been adopted for carrying out the nonlinear elastic interaction analysis of a two-bay two-storey infilled building frame. The frame and the infill have been considered to behave in linear elastic manner, whereas the subsoil in nonlinear elastic manner. In this paper, the computational methodology adopted for nonlinear soil-structure interaction analysis of infilled frame-foundation-soil system has been presented.