• Title/Summary/Keyword: A mesh generation program

Search Result 58, Processing Time 0.025 seconds

Adaptive Finite Element Method by Selective p-Distribution (선택적 p-분배에 의한 적응적 유한 요소법)

  • 조준형;우광성;박진환;안재석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.288-295
    • /
    • 2003
  • An adaptive procedure in finite element analysis is presented by p-refinement of meshes in conjunction with a posteriori error estimator that is based on the recovery technique. In case of the recovery technique, the SPR(superconvergent patch recovery) approach has been modified for p-adaptive mesh refinement. The strategy of finding a nearly optimal distribution of polynomial degrees on a fixed finite element mesh is discussed such that a particular element has to be refined automatically to obtain an acceptable level of accuracy by increasing p-levels non-uniformly. To verify the proposed algorithm, the limit value approach is proposed which utilizes the exact strain energy computed from the extrapolation equation. A new pre-processor is developed for the p-version finite element program in which the vector graphic editor is used for the automatic generation of node connection and coordinate by halfedge solid data structure according to uniform or nonuniform p-distribution. The general 2-D algorithm is also developed to generate face modes and internal modes in accordance with different mesh types. The quality of the error estimator is investigated with the help of two mumerical examples. The results show that the sequences of p-distributions obtained by the proposed error indicator closely follow the optimal trajectory.

  • PDF

A Study on the Structural Optimum Design Method of Composite Rotor Blade Cross-Section using Genetic Algorithm (유전자 알고리즘을 이용한 복합재 로터 블레이드 단면 구조 최적설계방법에 관한 연구)

  • Won, You-Jin;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.275-283
    • /
    • 2013
  • In this paper, the structural optimum design method of composite rotor blade cross-section was investigated with the genetic algorithm. An auto-mesh generation program was developed for iterative calculations of optimum design, and stresses in the blade cross-section were analyzed by VABS (variational asymptotic beam sectional analysis) program. Minimum mass of rotor blade was defined as an object function, and stress failure index, center mass and blade minimum mass per unit length were chosen as constraints. Finally, design parameters such as the thickness and layup angles of a skin, and the thickness, position and width of a torsion box were determined through the structural optimum design method of composite rotor blade cross-section presented in this paper.

Transient Dynamic Analysis of a Patterned Tire Rolling over a Cleat with an Explicit Finite Element Program (외연적 유한요소법을 이용한 패턴 타이어에 대한 돌기물 통과시의 동적 특성 해석)

  • 김기운;정현성;범현규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.164-170
    • /
    • 2003
  • The finite element analysis of tires has been conventionally performed by either neglecting tread pattern or modeling only circumferential grooves. Besides, the tire analysis has been mainly limited to static or steady state rolling analysis. In this paper, a transient dynamic analysis of a patterned tire rolling over a cleat with an explicit finite element program is presented. The patterned tire with detailed tread blocks is modeled by a systematic mesh generation procedure, in which tire body and tread pattern meshes are separately generated in the beginning and then both meshes are combined by the tie constraint method. The cleat impact analysis is conducted by using both the patterned tire and the smooth tire models to predict the cleat enveloping characteristics. It is seen that the analysis results of the patterned tire model are in a good agreement with the experimental results.

Development of a Program for Analyzing the Characteristics of the Temperature Distribution of the LPG Engine Cylinder Block (LPG 엔진 실린더 블록의 온도 분포 특성 해석을 위한 프로그램 개발)

  • Son, Byung Jin;You, Chin Sok;Kim, Chang Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1746-1754
    • /
    • 1998
  • A computer program has been developed to predict the heat transfer characteristics and the temperature distribution in the cylinder block of a 4-cylinder, 4-stroke engine. The finete element method is employed to handle the complex geometries associated with the practical cylinder block. The hexahedron finite element is used for a mesh generation of three-dimensional domain. The present numerical procedure has been validated with the measured temperature at several locations of cylinder block. The heat transfer characteristics of engine cylinder block is systematically analyzed for various engine speeds and loading conditions.

An Automatic Data Generation Procedure for Finite Element Structural Analysis of Cargo Holds of a Ship (선체중앙부 유한요소 구조해석을 위한 입력자동화)

  • S.W. Park;J.G. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.99-108
    • /
    • 1994
  • As a consequent result of our previous paper, "Development of Automatic Data Generation Program for Finite Element Structural Analysis of Oil Tankers"[1], the objective of this paper is to develop an automatic modeling program for the three-dimensional finite element structural analysis of hull modules of general commercial ships, especially oil tankers, bulk carriers, and container ships. Based on the proposed algorithm in [1], the followings are newly added: general applicability for three ship types, automatic mesh division interface with MSC/NASTRAN, direct wave load calculation interface, and Graphic User Interface technology in the process of input data preparation. The usefulness of this procedure is verified by calculation examples. examples.

  • PDF

Wind load analysis of Structure for Folding Solar Power System (접이식 태양광 발전 구조물의 풍하중해석)

  • Son, Chang-Woo;Kim, Tae-Kyun;Seo, Tae-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.1-7
    • /
    • 2018
  • A folding solar power system is a stand-alone system and is a structure with solar panels attached. It consists of supporting parts and folding parts for ease of movement. While the efficiency of solar panels is also important to produce electricity by maximizing the power efficiency of solar panels, the most important thing is structure stability. The folding solar power structure intended to be developed in this study is a collapsible structure that is easy to move and install into systems that can produce electricity from grid to independent. Since these structures are installed outdoors, wind loads, snow cover, etc. In this paper, the wind loads most affected by the folding solar power generation structure were obtained using the MeshFree Finite Element Method. MeshFree is a program that makes it easier for users to interpret by simplifying the mesh tasks required by an existing analysis. The analysis showed that the greater the angle of inclination of the wind to the ground, the greater the wind load. In addition, reliability was ensured by wind load testing.

The Strength Analysis of Passenger Car Seat Frame (승용차 시트프레임의 강도해석)

  • 임종명;장인식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.205-212
    • /
    • 2003
  • This paper may provide a basic design data for the safer car seat mechanism and the quality of the material used by finding out the passenger's dynamic behavior when protected by seat belt during collision. A computer simulation with finite element method is used to accomplish this objective. At first, a detailed geometric model of the seat is constructed using CAD program. The formation of a finite element from a geometric data of the seat is carried out using Hyper-Mesh that is the commercial software for mesh generation and post processing. In addition to seat modeling, the finite element model of seat belt and dummy is formed using the same software. Rear impact analysis is accomplished using Pam-Crash with crash pulse. The part of the recliner and right frame is under big stress in rear crash analysis because the acceleration force is exerted on the back of the seat by dummy. The stress condition of the part of the bracket is checked as well because it is considered as an important variable on the seat design. Front impact model which including dummy and seal belt is analyzed. A Part of anchor buckle of seat frame has high stress distribution because of retraction force due to forward motion of dummy at the moment of collision. On the basis of the analysis result, remodeling and reanalysis works had been repeatedly done until a satisfactory result is obtained.

Two Dimensional Finite Element Analysis on the Composite Ground Improved by Sand Compaction Piles with Low Area Replacement Ratio (저치환율 SCP 복합지반의 2차원 유한요소 해석기법 개발과 적용)

  • Shin, Hyun-Young;Han, Sang-Jae;Kim, Soo-Sam;Kim, Jae-Kwon;Sym, Sung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.394-401
    • /
    • 2006
  • This study developed two dimensional finite element program(FE-SCP) for the analysis of a composite ground reinforced by sand compaction piles with a low area replacement ratio based on the Mohr-Coulomb elastic perfectly plastic constitutive model. Program FE-SCP give some conveniences to users such as automatic mesh generation according to the replacement ratio and the effective sand pile diameter in the post processor. Also, it contains optimum processor in calculation of In-situ stress equilibrium considering different coefficient of earth pressure between sand pile and surrounding clay. Estimated stress-strain behavior using FE-SCP and the measured one from a centrifuge test showed good agreement comparing to the result from a general finite element program.

  • PDF

Discrete Optimal Design of Composite Rotor Blade Cross-Section (복합재 로터 블레이드 단면 이산최적설계)

  • Won, You-Jin;Lee, Soo-Yong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.2
    • /
    • pp.7-14
    • /
    • 2013
  • In this paper, the optimal design of composite rotor blade cross-section is performed using a genetic algorithm. Skin thickness, torsion box thickness and skin lay-up angle are adopted as discrete design variables. The position and width of a torsion box are considered as continuous variables. An object function of optimal design is to minimize the mass of a rotor blade, and constraints are failure index, center mass, natural frequency and blade minimum mass per unit length. Finally, design variables such as the thickness and lay-up angles of a skin, and the thickness, position and width of a torsion box are determined by using an in-house program developed for the optimal design of rotor blade cross-section.

3-D elastoplastic finite element analysis of umbrella arch reinforcement system for tunnelling

  • Shin Hyu-Soung;Sicilia Carlos;Bae Gyu-Jin;Kim Chang-Yong;Hong Sung-Wan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.184-191
    • /
    • 2003
  • In this paper, a mathematical framework based on a homogenisation technique to simulate 'umbrella arch reinforcement system' (UARS) and its implementation into a 3D Finite Element program that can consider stage construction situations are presented. The constitutive model developed allows considering the main design parameters of the problem and only requires geometrical and mechanical properties of the constituents. Additionally, the use of a homogenisation approach implies that the generation of the Finite Element mesh can be easily produced and that re-meshing is not required as basic geometrical parameters such as the orientation of the pipes are changed. The model developed is used to simulate tunnelling with the UARS. From the analyses, the effects of the main design parameters on the elastic and the elastoplastic analyses are considered.

  • PDF