• Title/Summary/Keyword: A load

Search Result 30,001, Processing Time 0.064 seconds

An New Load Allocation Algorithms of Direct Load Control (직접부하제어 시스템의 새로운 부하 배분 알고리즘)

  • Kim, Jeong-Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.407-410
    • /
    • 2010
  • This paper presents an advanced load allocation algorithm in Direct Load Control(DLC) system. It is important to aggregate a various demand side resource which is surely controllable at the peak power time for a successful DLC system. Previous load allocation algorithm appropriate for DLC system is based on interchanged information, but, this algorithm can not derive optimal solutions. In this paper, we develop the optimal algorithm and the new load allocation algorithm in polynomial time. The simulation results show that the proposed heuristic algorithm for DLC system is very effective.

Estimation of Load on Ship's Hydraulic Steering Gear (선박 유압 조타장치 부하의 추정)

  • Ji, S.W.;Oh, J.M.;Jeong, E.S.;Kim, B.K.;Lee, I.Y.
    • Journal of Drive and Control
    • /
    • v.12 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • For testing a newly designed ship's steering gear, a steering gear test bench with a steering gear to be tested and a load generation part should be prepared. The load given to the steering gear has to be pertinent to the load generated in a targeted ship. In this study, the authors suggest a process of estimating the load given to steering gears in ships. At first, a test for measuring the load in the steering gear of a real ship was conducted. Then, a process was developed to compute rudder driving torque and force by using basic equations including some empirical equations on ship's steering. The test results and the computation results on the load in the steering gear were compared, As a result, the process suggested in this study for estimating load in ship's steering gears was verified.

A Study on Construction of the CMELDC at Load Points (각 부하지점별 유효부하지속곡선 작성법에 관한 연구)

  • Kim, Hong-Sik;Mun, Seung-Pil;Choe, Jae-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.195-198
    • /
    • 2000
  • This paper illustrates a new method for constructing composite power system effective load duration curve(CMELDC) at load points. The main concept of proposed method is that the CMELDC can be obtain from convolution integral processing of the outage probabilistic distribution function of not supplied power and the load duration curve given at each load point. The effective load duration curve (ELDC) at HLI plays an important part in probabilistic production simulation, reliability evaluation, outage cost assessment and power supply margins assesment for power system planning and operation. And also, the CMELDC at HLII will extend the application areas of outage cost assessment and reliability evaluation at each load point. The CMELDC at load points using the Monte Carlo method and a DC load flow constrained LP have already been developed by authors. The effective load concept at HLII, however, has not been introduced sufficiently in last paper although the concept is important. In this paper, the main concept of the effective load at HLII which is proposed in this study is defined in details as the summation of the original load and the probabilistic loads caused by the forced outage of generators and transmission lines at this load point. The outage capacity probabilistic distribution function at HLII can be obtained by combining the not supplied powers and the probabilities of the not supplied powers at this load point. It si also expected that the proposed CMELDC can be applied usefully to research areas such as reliability evaluation, probabilistic production cost simulation and analytical outage cost assessment, etc. at HLII in future. The characteristics and effectiveness of this methodology are illustrated by case study of IEEE-RTS.

  • PDF

An Intelligent New Dynamic Load Redistribution Mechanism in Distributed Environments

  • Lee, Seong-Hoon
    • International Journal of Contents
    • /
    • v.3 no.1
    • /
    • pp.34-38
    • /
    • 2007
  • Load redistribution is a critical resource in computer system. In sender-initiated load redistribution algorithms, the sender continues to send unnecessary request messages for load transfer until a receiver is found while the system load is heavy. These unnecessary request messages result in inefficient communications, low CPU utilization, and low system throughput in distributed systems. To solve these problems, we propose a genetic algorithm based approach for improved sender-initiated load redistribution in distributed systems. Compared with the conventional sender-initiated algorithms, the proposed algorithm decreases the response time and task processing time.

TAR(Threshold Autoregressive) Model for Short-Term Load Forecasting Using Nonlinearity of Temperature and Load (온도와 부하의 비선형성을 이용한 단기부하예측에서의 TAR(Threshold Autoregressive) 모델)

  • Lee, Gyeong Hun;Lee, Yun Ho;Kim, Jin O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.9
    • /
    • pp.399-399
    • /
    • 2001
  • This paper proposes TAR(Threshold Autoregressive) model for short-term load forecasting including temperature variable. In the scatter diagram of daily peak load versus daily high or low temperature, we can find out that the load-temperature relationship has a negative slope in the lower regime and a positive slope in the upper regime due to the heating and cooling load, respectively. TAR model is adequate for analyzing these phenomena since TAR model is a piecewise linear autoregressive model. In this paper, we estimated and forecasted one day-ahead daily peak load by applying TAR model using this load-temperature characteristic in these regimes. The results are compared with those of linear and quadratic regression models.

TAR(Threshold Autoregressive) Model for Short-Term Load Forecasting Using Nonlinearity of Temperature and Load (온도와 부하의 비선형성을 이용한 단기부하예측에서의 TAR(Threshold Autoregressive) 모델)

  • Lee, Gyeong-Hun;Lee, Yun-Ho;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.9
    • /
    • pp.309-405
    • /
    • 2001
  • This paper proposes TAR(Threshold Autoregressive) model for short-term load forecasting including temperature variable. In the scatter diagram of daily peak load versus daily high or low temperature, we can find out that the load-temperature relationship has a negative slope in the lower regime and a positive slope in the upper regime due to the heating and cooling load, respectively. TAR model is adequate for analyzing these phenomena since TAR model is a piecewise linear autoregressive model. In this paper, we estimated and forecasted one day-ahead daily peak load by applying TAR model using this load-temperature characteristic in these regimes. The results are compared with those of linear and quadratic regression models.

  • PDF

A THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS ON STRESS AND DISPLACEMENT RELATED TO ISTHMUS WIDTH OF GOLD INLAY CAVITY (금인레이 와동의 폭경이 응력분포와 변위에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Hwang, Ho-Keel;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.384-408
    • /
    • 1994
  • The purpose of this study was to evaluate the fracture resistance of tooth restored with gold inlay. A profound understanding of the isthmus width factor, which is one of the several parameters of cavity designs, would facilitate the appropriate cavity preparation in a specific clinical situation. In this study, the cavities for gold inlay were prepared in maxillary left first premolar. A three-dimensional model was designed using I-DEAS program. The model was composed of 2515- nodes and 2172 isoparametric brick elements. In the model isthmus width was varied into 1/4, 1/3 and 1/2 of intercuspal width respectively, and numeric values of the material properties of enamel, dentin and gold was set. Three types of load : concentrated load, divided load and distributed load was 500N. The empty cavities in the model were also examined using divided load and distributed load. The three - dimensional Finite Element Method was used to analysis the displacement and stress distribution. The results were as follows : 1. All of the experimental models which were filled with gold inlay revealed similar direction of displacement to that of the natural tooth model under the same load type. But in the models with empty cavities, as the isthmus width increased, the degree of displacement increased in the case of divided load type. 2. All experimental models which were filled with gold inlay showed stress concentration at load points, but in the models with empty cavities at divided load type, as isthmus width increased, stress was concentrated at the comer of the pulpal floor. 3. In the models with empty cavities at divided load type, tooth fracture was expected regardless of isthmus width, but all experimental models which were filled with gold inlay after cavity preparation were not susceptible to fracture. 4. In all experimental models which were filled with gold inlay after cavity preparation, displacement patterns were similar under both concentrated and divided load types. In the models with empty cavities, a divided load resulted in a bucco-lingual cuspal displacemenat in both sides, but a distributed load resulted in a lingual displacement of the tooth.

  • PDF

FINITE ELEMENT ANALYSIS OF STRESSES AND DEFLECTIONS INDUCED BY FIXED PARTIAL DENTURE USING ENDOSTEAL IMPLANT (골내 임프란트를 이용한 고정성 국소의치 하에서 변위 및 응력에 관한 유한요소법적 분석)

  • Choi, Su-Ho;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.1
    • /
    • pp.233-248
    • /
    • 1991
  • The purpose of this study was to qunatatively analyze the stress patterns induced in the abutment, superstructure, supporting bone and to determine the deflection of abutment and superstructure by appling occlusal force to natural teeth supported fixed prostheses and implant-supported fixed prostheses. The analysis has been conducted by using the two dimensional finite element method. The implant and natural tooth-supported bridge has a first molar pontic supported by mandibular second bicuspid and implant posterior retainer, which were rigidly(Model A) or flexible(Model B). The natural teeth-supported bridge has a first molar pontic supported by mandibular second bicuspid and second molar, which were rigidly splinted together(Model C). 63.5kg(Load P1) of localized load on central fossa of first molar pontic and 24kg(Load P2) of distributed load on each occlusal surface were applied respectively. 1. The coronal portion of premolar pontic and posterior abutment in fixed partial denture deflected inferiorly in order of Model B, Model C and Model A under Load P1 and Load P2. 2. Mesial displacement of the coronal portion of premolar showed in Model A, Model B and Model C under Load P1, but mesial displacement of that in Model B and distal displacement of that in Model A and Model C showed under Load P2. 3. Mesial displacement of the coronal portion of the pontic and distal displacement of the coronal portion of posterior abutment showed in Model A, Model B and Model C under Load P1 and Load P2. Displacement in the case of Model B was greater than that of Model A and Model C. 4. In the case Model A under Load P1 and Load P2, high stress apically was concentrated in the mesiocervical portion of the posterior abutment than in the disto-cervical portion of the premolar. 5. In the case of Model B under Load P1 and Load P2 high stress was concentrated in the case of the premolar than in that of posterior abutment and high stress especially was concentrated in the connected portion of pontic and posterior abutment. 6. In the case of Model C under Load P1 and Load P2, high stress was concentrated in the distal area of the cornal portion of premolar and the mesial area of the coronal portion of posterior abutment, and stress pattern was anteroposterially symmetric around the pontic. 7. Load P1 and Load P2 compared, stress magnitude was different but stress pattern was similar in Model A, Model B and Model C. 8. Under Load P1 and P2, stress magnitude in the mesial distal portion and the portion of root apex of the posterior abutment was in order of Model B, Model A and Model C.

  • PDF

A Modeling Method of Load Section on High Voltage Distribution Line Integrated with Dispersed Generation System for Real-Time Optimal Voltage Regulation (분산형전원이 도입된 배전계통의 리얼타임 최적전압조정을 위한 부하구간 모델링방법)

  • Kim, Jae-Eon;Kim, Tae-Eung
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.699-703
    • /
    • 1999
  • It is known that the LDC(Line-Drop Compensator) becomes to lose the function of proper voltage regulation for its load currents due to the real and reactive power generated by DGS(Dispersed Generation System), when DGS is introduced into the power distribution system of which the voltage is controlled by LDC. Therefore, in that case, it is very difficult to regulate the distribution line voltage properly by using LDC. One possible solution for this problem is the real-time voltage regulation method which is to optimally regulate the sending-end voltage in real-time by collecting the real-time load data of each load data of each load section between measuring points and by calculating the optimal seding-end voltage value from them. For this, we must know the real-time load data of each load section. In this paper, a modeling method of representing a load section on high voltage line with DGSs as an equivalent lumped load is proposed for gaining the real-time load data. In addition a method of locating the measuring points is proposed. Then, these proposed methods are evaluated through computer simulations.

  • PDF

Characteristic of Human Dynamic load Acting on the Lightweight Wall (경량벽체에 작용하는 인간의 동적하중 특성)

  • Roh, Yong-Woon;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.188-189
    • /
    • 2013
  • The purpose of this research is to comprehend experimentally the characteristic of human dynamic load and provide the result as basic data to suggest a valid impact-resistance evaluation method. Human motions exerting dynamic load are classified to 3 types. Selecting 3 ranks of motion strength, 3 ranks of load plane stiffness (A:20kN/cm, B:4.7kN/cm, C:2.2kN/cm), and 30 male grownup inspectors in their twenties, load was measured when they applied force on load plane. Result of this research is as follows: (1) Human dynamic load has different nature from object collision in the highest load ratio depending on the load plane stiffness and action time (2) The highest load ratio for each motion was 10.06 for kicking, 4.44 for hitting with shoulder, and 5.58 for fist blow.

  • PDF