• Title/Summary/Keyword: A load

Search Result 30,108, Processing Time 0.047 seconds

A Stochastic Pplanning Method for Semand-side Management Program based on Load Forecasting with the Volatility of Temperature (온도변동성을 고려한 전력수요예측 기반의 확률론적 수요관리량 추정 방법)

  • Wi, Young-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.852-856
    • /
    • 2015
  • Demand side management (DSM) program has been frequently used for reducing the system peak load because it gives utilities and independent system operator (ISO) a convenient way to control and change amount of electric usage of end-use customer. Planning and operating methods are needed to efficiently manage a DSM program. This paper presents a planning method for DSM program. A planning method for DSM program should include an electric load forecasting, because this is the most important factor in determining how much to reduce electric load. In this paper, load forecasting with the temperature stochastic modeling and the sensitivity to temperature of the electric load is used for improving load forecasting accuracy. The proposed planning method can also estimate the required day, hour and total capacity of DSM program using Monte-Carlo simulation. The results of case studies are presented to show the effectiveness of the proposed planning method.

Unit Commitment for an Uncertain Daily Load Profile

  • Park Jeong-Do
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.1
    • /
    • pp.16-21
    • /
    • 2005
  • In this study, a new Unit Commitment (UC) algorithm is proposed to consider the uncertainty of a daily load profile. The proposed algorithm calculates the UC results with a lower load level than that generated by the conventional load forecast method and the greater hourly reserve allocation. In case of the worst load forecast, the deviation of the conventional UC solution can be overcome with the proposed method. The proposed method is tested with sample systems, which indicates that the new UC algorithm yields a completely feasible solution even when the worst load forecast is applied. Also, the effects of the uncertain hourly load demand are statistically analyzed, particularly by the consideration of the average over generation and the average under generation. Finally, it is shown that independent power producers participating in electricity spot-markets can establish bidding strategies by means of the statistical analysis. Therefore, it is expected that the proposed method can be used as the basic guideline for establishing bidding strategies under the deregulation power pool.

Numerical investigations of pile load distribution in pile group foundation subjected to vertical load and large moment

  • Ukritchon, Boonchai;Faustino, Janine Correa;Keawsawasvong, Suraparb
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.577-598
    • /
    • 2016
  • This paper presents a numerical study of pile force distribution in a pile group foundation subjected to vertical load and large moment. The physical modeling of a pile foundation for a wind turbine is analyzed using 3D finite element software, PLAXIS 3D. The soil profile consists of several clay layers, which are modeled as Mohr-Coulomb material in an undrained condition. The piles in the pile group foundation are modeled as special elements called embedded pile elements. To model the problem of a pile group foundation, a small gap is created between the pile cap and underlying soil. The pile cap is modeled as a rigid plate element connected to each pile by a hinge. As a result, applied vertical load and large moment are transferred only to piles without any load sharing to underlying soil. Results of the study focus on pile load distribution for the square shape of a pile group foundation. Mathematical expression is proposed to describe pile force distribution for the cases of vertical load and large moment and purely vertical load.

A Study on the Transmission Tower Foundation Design and Construction Method - A Focus of Cylindrical Foundation - (가공 송전 철탑기초 설계 및 시공 방법 연구 - 심형기초를 중심으로 -)

  • Jang, Suk-Han;Kim, Hee-Kwang;Lee, Kang-Hyeon;Han, Kyung-Soo;Ham, Bang-Wook;Chung, Ki-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1031-1034
    • /
    • 2007
  • Electric transmission lines pass through a variety of area. Foundation supporting the conductors and tower are selected properly in accordance with external load, for example dead load, wind load, snow load, construction load etc, and topography and geology condition. Typical types of foundation are as follows: pad foundation for small load and hard soil or rock in mountainous area, pile foundation for medium or large load and soft soil in plain field area. This paper introduced cylindrical foundation design & construction for large load and mountainous area. This foundation failure mode against pulling-out show splitting failure by tensile force toward circumferential direction.

A Study on the Load Flow Program for 765[㎸] Substation Simulator (765[㎸] 변전소 시뮬레이터를 위한 조류계산 프로그램에 관한 연구)

  • 여상민;김철환;이종포
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.201-206
    • /
    • 2003
  • Power system is analyzed by three methods of load flow, fault calculation, and voltage stability. Among there, load flow is calculated to flow of power in power in system at steady state. But, load flow is difficult to analyze to flow of power in substation, because power flow frequently alter by various equipments such as circuit bleaker, disconnect switch and shunt reactor. Particular, in 765[㎸] system, because of form of 1.5GB for stable operation, structure of substation has been very complex. In this paper, we describe technique for application of load flow algorithm in simulator for 765[㎸] substation. For this technique, we built each database for various equipments and considered form of 1.5GB Data as form of bus and line, for application of load flow, are acquired from built database, and then calculate load flow in substation. And. results of load flow are outputted in screen of operator console program.

An adaptive load balancing method for RFID middlewares based on the Standard Architecture (RFID 미들웨어 표준 아키텍처에 기반한 적응적 부하 분산 방법)

  • Park, Jae-Geol;Chae, Heung-Seok
    • The KIPS Transactions:PartD
    • /
    • v.15D no.1
    • /
    • pp.73-86
    • /
    • 2008
  • Because of its capability of automatic identification of objects, RFID(Radio Frequency Identification) technologies have extended their application areas to logistics, healthcare, and food management system. Load balancing is a basic technique for improving scalability of systems by moving loads of overloaded middlewares to under loaded ones. Adaptive load balancing has been known to be effective for distributed systems of a large load variance under unpredictable situations. There are needs for applying load balancing to RFID middlewares because they must efficiently treat vast numbers of RFID tags which are collected from multiple RFID readers. Because there can be a large amount of variance in loads of RFID middlewares which are difficult to predict, it is desirable to consider adaptive load balancing approach for RFID middlewares, which can dynamically choose a proper load balancing strategy depending on the current load. This paper proposes an adaptive load balancing approach for RFID middlewares and presents its design and implementation. First we decide a performance model by a experiment with a real RFID middleware. Then, a set of proper load balancing strategies for high/medium/low system loads is determined from a simulation of various load balancing strategies based on the performance model.

The Mechanism Study of Gait on a Load and Gender Difference

  • Ryew, Checheong;Hyun, Seunghyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2021
  • Gait kinematics and kinetics have a similar tendency between men and women, yet it remains unclear how walking while carrying a load affects the gait mechanism. Twenty adults walked with preferred velocity on level ground of 20 m relative to change of a load carriage (no load, 15%, 30% of the body weights) aimed to observe gait mechanism. We measured gait posture using the three-dimensional image analysis and ground reaction force system during stance phase on left foot. In main effect of gender difference, men showed increased displacement of center of gravity (COG) compared to women, and it showed more extended joint angle of hip and knee in sagittal plane. In main effect of a load difference, knee joint showed more flexed postuel relative to increase of load carriage. In main effect of load difference on the kinetic variables, medial-lateral force, anterior-posterior force (1st breaking, 2nd propulsive), vertical force, center of pressure (COP) area, leg stiffness, and whole body stiffness showed more increased values relative to increase of load carriage. Also, men showed more increased COP area compared to women. Interaction showed in the 1st anterior-posterior force, and as a result of one-way variance analysis, it was found that a load main effect had a greater influence on the increase in the magnitude of the braking force than the gender. The data in this study explains that women require little kinematic alteration compared to men, while men in more stiff posture accommodate an added load compared to women during gait. Additionally, it suggests that dynamic stability is maintained by adopting different gait strategies relative to gender and load difference.

Co-Simulation for Electric Motor Drive System Using RecurDyn and Matlab with Simulink (RecurDyn과 Matlab/Simulink를 연동한 전동기 구동시스템의 시뮬레이션)

  • Kim, Sang-Hoon
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.163-168
    • /
    • 2007
  • For an accurate computer simulation to motor drive systems, the target mechanical load system driven by a motor needs to be model its characteristics accurately. In general, a load system is modeled simply with system parameters such as approximated system inertia and friction. So, simulation results have some errors compared with experimental results for a real load system. RecurDyn is a mechanics simulation program for 3-dimension analysis to mechanical load systems. From this program, parameters such as a load torque, a system inertia and a viscous friction can be obtained accurately which are required to model a mechanical system. Also, this program operates together Matlab/Simulink which is used to simulate electrical motor drive systems. So, an accurate simulation for the whole system with a motor drive system and a mechanical load is possible. This paper introduces an application of RecurDyn program to an electric forklift drive system using IPMSM(Interior Permanent Magnet Synchronous Motor) and examines the feasibility of co-simulation it with Matlab/Simulink.

  • PDF

Analysis of load sharing characteristics for a piled raft foundation

  • Ko, Junyoung;Cho, Jaeyeon;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.449-461
    • /
    • 2018
  • The load sharing ratio (${\alpha}_{pr}$) of piles is one of the most common problems in the preliminary design of piled raft foundations. A series of 3D numerical analysis are conducted so that special attentions are given to load sharing characteristics under varying conditions, such as pile configuration, pile diameter, pile length, raft thickness, and settlement level. Based on the 3D FE analysis, influencing factors on load sharing behavior of piled raft are investigated. As a result, it is shown that the load sharing ratio of piled raft decreases with increasing settlement level. The load sharing ratio is not only highly dependent on the system geometries of the foundation but also on the settlement level. Based on the results of parametric studies, the load sharing ratio is proposed as a function of the various influencing factors. In addition, the parametric analyses suggest that the load sharing ratios to minimize the differential settlement of piled raft are ranging from 15 to 48% for friction pile and from 15 to 54% for end-bearing pile. The recommendations can provide a basis for an optimum design that would be applicable to piled rafts taking into account the load sharing characteristics.

A Study on the Effective Enhancement of the Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost (부하역률 감도기법 적용에 의한 효율적인 부하역률 개선에 관한 연구)

  • Lee Byung Ha;Kim Jung-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.1
    • /
    • pp.18-24
    • /
    • 2005
  • Various problems such as the increase of the power loss and the voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the comprehensive management of reactive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost is derived and it is used for determining the locations of reactive power compensation devices effectively and for enhancing the load power factor appropriately. In addition, the voltage variation penalty cost is introduced and the integrated costs including the voltage variation penalty cost are used for determining the value of the load power factor from the point of view of the economic investment and voltage regulation. It is shown through the application to a large-scale power system that the load power factor can be enhanced effectively and appropriately using the load power factor sensitivity and integrated costs.