• 제목/요약/키워드: A least square error

검색결과 625건 처리시간 0.03초

A modified partial least squares regression for the analysis of gene expression data with survival information

  • Lee, So-Yoon;Huh, Myung-Hoe;Park, Mira
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권5호
    • /
    • pp.1151-1160
    • /
    • 2014
  • In DNA microarray studies, the number of genes far exceeds the number of samples and the gene expression measures are highly correlated. Partial least squares regression (PLSR) is one of the popular methods for dimensional reduction and known to be useful for the classifications of microarray data by several studies. In this study, we suggest a modified version of the partial least squares regression to analyze gene expression data with survival information. The method is designed as a new gene selection method using PLSR with an iterative procedure of imputing censored survival time. Mean square error of prediction criterion is used to determine the dimension of the model. To visualize the data, plot for variables superimposed with samples are used. The method is applied to two microarray data sets, both containing survival time. The results show that the proposed method works well for interpreting gene expression microarray data.

최소자승법을 이용한 적응형 데이터 윈도우의 거리계전 알고리즘 (Distance Relaying Algorithm Based on An Adaptive Data Window Using Least Square Error Method)

  • 정호성;최상열;신명철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권8호
    • /
    • pp.371-378
    • /
    • 2002
  • This paper presents the rapid and accurate algorithm for fault detection and location estimation in the transmission line. This algorithm uses wavelet transform for fault detection and harmonics elimination and utilizes least square error method for fault impedance estimation. Wavelet transform decomposes fault signals into high frequence component Dl and low frequence component A3. The former is used for fault phase detection and fault types classification and the latter is used for harmonics elimination. After fault detection, an adaptive data window technique using LSE estimates fault impedance. It can find a optimal data window length and estimate fault impedance rapidly, because it changes the length according to the fault disturbance. To prove the performance of the algorithm, the authors test relaying signals obtained from EMTP simulation. Test results show that the proposed algorithm estimates fault location within a half cycle after fault irrelevant to fault types and various fault conditions.

이동통신 환경에서 적응상태 축약 심볼열 추정 수신기 (The adaptive reduced state sequence estimation receiver for multipath fading channels)

  • 이영조;권성락;문태현;강창언
    • 한국통신학회논문지
    • /
    • 제22권7호
    • /
    • pp.1468-1476
    • /
    • 1997
  • 상태축약심볼열추정(RSSE: Reduced State Sequence Estimation) 수신기는 비터비 복호기와 채널 추정기로 구성된다. 이동통신과 같이 채널이 변하는 환경에서는 적응 채널추정기(adaptive channel estimator)로 채널의 변화를 계속적으로 추정해야 한다. 일반적으로 사용되는 채널 추정기는 임시결정된 비터비 복호기의 출력을 사용하여 채널을 추정 하는데, 비터비 복호기에서 잘못된 결정을 내릴 경우 이로 인해 오류전파(error propagation)가 발생할 수있다. 본 논문에서는 좀더 정확한 채널 추정과 오류전파를 막기 위해 경로 메모리를 사용하는 새로운 채널추정기를 사용한다. 이 채널 추정기는 비터비 복호기의 여러 경로중에서 가장 작은 경로를 선택하여 그 경로상의 신호를 이용하여 채널 추정을 행한다. 그리고 채널 추정기의 적응 알고리듬으로서 LMS(Least Mean Square)알고리듬과 Recursive Least Square(RLS) 알고리듬을 사용하여 비교한다. 실험 결과를 통해 제안된 채널 추정기를 사용하는 RSSE 수신기가 기존의 채널 추정기를 사용하는 RSSE 수신기에 비해 더 나은 성능을 나타내는 것을 볼 수있으며, 페이딩이 존재하는 이동통신 환경에서는 LMS 알고리듬이 적합하지 않음을 알 수있다.

  • PDF

Kurtosis Driven Variable Step-Size Normalized Least Mean Square Algorithm for RF Repeater

  • Han, Yong-Sik;Yang, Woon-Geun
    • Journal of information and communication convergence engineering
    • /
    • 제8권2호
    • /
    • pp.159-162
    • /
    • 2010
  • This paper presents a new Kurtosis driven Variable Step-Size Normalized Least Mean Square (KVSSN-LMS) algorithm to prevent repeater from oscillation due to feedback signal of radio frequency (RF) repeater. To get better Mean Square Error (MSE) performance, step-size is adjusted using the kurtosis. The proposed algorithm shows the better performance of steady state MSE. The proposed algorithm shows a better ERLE performance than that of KVSS-LMS, VSS-NLMS, NLMS algorithms.

고속하다마드 변환을 이용한 적응 필터의 구현 (Implementation of adaptive filters using fast hadamard transform)

  • 곽대연;박진배;윤태성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1379-1382
    • /
    • 1997
  • We introduce a fast implementation of the adaptive transversal filter which uses least-mean-square(LMS) algorithm. The fast Hadamard transform(FHT) is used for the implementation of the filter. By using the proposed filter we can get the significant time reduction in computatioin over the conventional time domain LMS filter at the cost of a little performance. By computer simulation, we show the comparison of the propsed Hadamard-domain filter and the time domain filter in the view of multiplication time, mean-square error and robustness for noise.

  • PDF

Non-uniform Weighted Vibration Target Positioning Algorithm Based on Sensor Reliability

  • Yanli Chu;Yuyao He;Junfeng Chen;Qiwu Wu
    • Journal of Information Processing Systems
    • /
    • 제19권4호
    • /
    • pp.527-539
    • /
    • 2023
  • In the positioning algorithm of two-dimensional planar sensor array, the estimation error of time difference-ofarrival (TDOA) algorithm is difficult to avoid. Thus, how to achieve accurate positioning is a key problem of the positioning technology based on planar array. In this paper, a method of sensor reliability discrimination is proposed, which is the foundation for selecting positioning sensors with small error and excellent performance, simplifying algorithm, and improving positioning accuracy. Then, a positioning model is established. The estimation characteristics of the least square method are fully utilized to calculate and fuse the positioning results, and the non-uniform weighting method is used to correct the weighting factors. It effectively handles the decreased positioning accuracy due to measurement errors, and ensures that the algorithm performance is improved significantly. Finally, the characteristics of the improved algorithm are compared with those of other algorithms. The experiment data demonstrate that the algorithm is better than the standard least square method and can improve the positioning accuracy effectively, which is suitable for vibration detection with large noise interference.

Integer-Valued HAR(p) model with Poisson distribution for forecasting IPO volumes

  • SeongMin Yu;Eunju Hwang
    • Communications for Statistical Applications and Methods
    • /
    • 제30권3호
    • /
    • pp.273-289
    • /
    • 2023
  • In this paper, we develop a new time series model for predicting IPO (initial public offering) data with non-negative integer value. The proposed model is based on integer-valued autoregressive (INAR) model with a Poisson thinning operator. Just as the heterogeneous autoregressive (HAR) model with daily, weekly and monthly averages in a form of cascade, the integer-valued heterogeneous autoregressive (INHAR) model is considered to reflect efficiently the long memory. The parameters of the INHAR model are estimated using the conditional least squares estimate and Yule-Walker estimate. Through simulations, bias and standard error are calculated to compare the performance of the estimates. Effects of model fitting to the Korea's IPO are evaluated using performance measures such as mean square error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) etc. The results show that INHAR model provides better performance than traditional INAR model. The empirical analysis of the Korea's IPO indicates that our proposed model is efficient in forecasting monthly IPO volumes.

메이크헴 수명분포에 의존한 소프트웨어 평균고장간격시간에 관한 모수 추정법 비교 연구 (A Comparative Study of the Parameter Estimation Method about the Software Mean Time Between Failure Depending on Makeham Life Distribution)

  • 김희철;문송철
    • Journal of Information Technology Applications and Management
    • /
    • 제24권1호
    • /
    • pp.25-32
    • /
    • 2017
  • For repairable software systems, the Mean Time Between Failure (MTBF) is used as a measure of software system stability. Therefore, the evaluation of software reliability requirements or reliability characteristics can be applied MTBF. In this paper, we want to compare MTBF in terms of parameter estimation using Makeham life distribution. The parameter estimates used the least square method which is regression analyzer method and the maximum likelihood method. As a result, the MTBF using the least square method shows a non-decreased pattern and case of the maximum likelihood method shows a non-increased form as the failure time increases. In comparison with the observed MTBF, MTBF using the maximum likelihood estimation is smallerd about difference of interval than the least square estimation which is regression analyzer method. Thus, In terms of MTBF, the maximum likelihood estimation has efficient than the regression analyzer method. In terms of coefficient of determination, the mean square error and mean error of prediction, the maximum likelihood method can be judged as an efficient method.

Least Square Channel Estimation for Two-Way Relay MIMO OFDM Systems

  • Fang, Zhaoxi;Shi, Jiong
    • ETRI Journal
    • /
    • 제33권5호
    • /
    • pp.806-809
    • /
    • 2011
  • This letter considers the channel estimation for two-way relay MIMO OFDM systems. A least square (LS) channel estimation algorithm under block-based training is proposed. The mean square error (MSE) of the LS channel estimate is computed, and the optimal training sequences with respect to this MSE are derived. Some numerical examples are presented to evaluate the performance of the proposed channel estimation method.

그룹화 CMA 알고리즘을 이용한 RF 중계기의 적응 간섭 제거 시스템(Adaptive Interference Cancellation System)에 관한 연구 (A Study on Adaptive Interference Cancellation System of RF Repeater Using the Grouped Constant-Modulus Algorithm)

  • 한용식;양운근
    • 한국전자파학회논문지
    • /
    • 제19권9호
    • /
    • pp.1058-1064
    • /
    • 2008
  • 본 논문에서는 RF(Radio Frequency) 중계기에서 그룹화 CMA(Constant Modulus Algorithm)와 LMS(Least Mean Square) 알고리즘을 이용하여 적응 필터를 적용시킨 새로운 혼합 간섭 제거기를 제안한다. 송신 안테나에서 수신안테나로 궤환되는 신호는 수신 시스템의 성능을 저하시킨다. 제안한 간섭 제거기는 그룹화 CMA 알고리즘 간섭 제거 기법을 적용시키기 때문에 기존 구조보다 나은 채널 적응 성능과 낮은 MSE(Mean Square Error)을 가진다. 이 구조는 기존 비선형 간섭 제거기에 비해 같은 MSE(Mean Square Error)에 대한 반복수와 하드웨어 복잡도를 줄여준다. 즉, 제안한 알고리즘은 LMS 알고리즘에 비해 평균 자승 에러가 적응 상수에 따라 2.5 dB 또는 4 dB 정도 낮은 값을 보였다. 또한, VSS(Variable Step Size)-LMS 알고리즘에 비해 수렴 속도가 빠르고, 비슷한 평균 자승 에러를 가진다.