• Title/Summary/Keyword: A Statistical Process Control System

Search Result 194, Processing Time 0.029 seconds

Unit Process Scheduling System Development and Calculation and Control Method of Planned Leadtime Using Multiple Linear Regression under Make to Order Manufacturing System in Transformer Winding Process (변압기 권선공정에서의 수주 제작품의 단위공정 일정관리 시스템 개발과 다중회귀분석을 이용한 계획 리드타임 산출 및 관리 방안)

  • Kang, Dae-Wan;Kang, Chang-Wook;Kang, Hae-Woon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.3
    • /
    • pp.117-124
    • /
    • 2008
  • Ultra-high voltage transformer industry has characteristic of small quantity batch production system by other order processing unlike general mass production systems. In this industry, observance of time deadline is very important in market competitive power security and company continued existence. The transformer winding is a process that rolls a coil is coated with an electric insulation material in order to generate the required voltage using the voltage fluctuation. The winding process is very important production process in the extra-high voltage transformer manufacturing industry because winding process is core process that occupy weight about half of whole process and is process that decide current ratio of transformer. This paper proposes a statistical calculation and control method of planned leadtime on the basis of real data and informations for the A company in transformer winding process. Moreover, we develop unit process scheduling system.

Design of Expected Loss Control Chart Considering Economic Loss (경제적 손실을 고려한 기대손실 관리도의 설계)

  • Kim, Dong-Hyuk;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.2
    • /
    • pp.56-62
    • /
    • 2013
  • Control chart is representative tool of Statistical Process Control (SPC). But, it is not given information about the economic loss that occurs when a product is produced characteristic value does not match the target value of the process. In order to manage the process, we should consider not only stability of the variation also produce products with a high degree of matching the target value that is most ideal quality characteristics. There is a need for process control in consideration of economic loss. In this paper, we design a new control chart using the quadratic loss function of Taguchi. And we demonstrate effectiveness of new control chart by compare its ARL with ${\overline{x}}-R$ control chart.

Assessing Infinite Failure Software Reliability Model Using SPC (Statistical Process Control) (통계적 공정관리(SPC)를 이용한 무한고장 소프트웨어 신뢰성 모형에 대한 접근방법 연구)

  • Kim, Hee Cheul;Shin, Hyun Cheul
    • Convergence Security Journal
    • /
    • v.12 no.6
    • /
    • pp.85-92
    • /
    • 2012
  • There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. It is shown that it is possible to do asymptotic likelihood inference for software reliability models based on infinite failure model and non-homogeneous Poisson Processes (NHPP). For someone making a decision about when to market software, the conditional failure rate is an important variables. The finite failure model are used in a wide variety of practical situations. Their use in characterization problems, detection of outliers, linear estimation, study of system reliability, life-testing, survival analysis, data compression and many other fields can be seen from the many study. Statistical Process Control (SPC) can monitor the forecasting of software failure and there by contribute significantly to the improvement of software reliability. Control charts are widely used for software process control in the software industry. In this paper, we proposed a control mechanism based on NHPP using mean value function of log Poission, log-linear and Parto distribution.

The Assessing Comparative Study for Statistical Process Control of Software Reliability Model Based on polynomial hazard function (다항 위험함수에 근거한 NHPP 소프트웨어 신뢰모형에 관한 통계적 공정관리 접근방법 비교연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.5
    • /
    • pp.345-353
    • /
    • 2015
  • There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. It is shown that it is possible to do parameter inference for software reliability models based on finite failure model and non-homogeneous Poisson Processes (NHPP). For someone making a decision to market software, the conditional failure rate is an important variables. In this case, finite failure model are used in a wide variety of practical situations. Their use in characterization problems, detection of outlier, linear estimation, study of system reliability, life-testing, survival analysis, data compression and many other fields can be seen from the many study. Statistical process control (SPC) can monitor the forecasting of software failure and thereby contribute significantly to the improvement of software reliability. Control charts are widely used for software process control in the software industry. In this paper, proposed a control mechanism based on NHPP using mean value function of polynomial hazard function.

Six sigma quality program using Cp (공정능력지수를 이용한 6 시그마 활용)

  • 박기주
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.41
    • /
    • pp.135-145
    • /
    • 1997
  • The statistical approach to quality control aims at alerting its user to any variations in the properties of a manufactured product. Motorola developed and pursued a quality management program called six sigma. The goal of six sigma programs is to improve customer satisfaction through reducing and eliminating defects. six sigma uses several statistical measure to characterize defect levels and process capabilities. The upper and lower specification limits are $\pm6\sigma$(sigma) from nominal, and the process mean is centered at nominal. only 0.002PPM are outside specification limits. Cp=2. this is the design target in a six sigma program. This article presents an important tool available for quality control of a production process at the occurrence of defects in manufactured products at view low levels to improve the efficiency of the manufacturing productivity and to satisfy customer through the reduction of defect rates. To understand the consequences of the level of quality on competitive position, a more technical perspective is needed.

  • PDF

Developing SPC System of an Automobile Parts Manufacturing Firm under POP System Environment (POP시스템 환경하의 자동차부품 제조업체의 SPC시스템 개발)

  • 이진춘;김정만;김오환
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.3
    • /
    • pp.8-14
    • /
    • 1999
  • SPC(Statistical Process Control) provides objective means of controlling quality in any transformation processes by analyzing statistically data gathered in the process. Considering the fact that a measure to feedback results of the process investigation in the real time is required, it is very practical to construct the SPC system as a module of the POP(Point of Production) system. Because this approach can make the investment cost reduced and achieve goals of production/process control and SPC simultaneously. This paper designed and developed the SPC system of firm S that manufactures automobile parts

  • PDF

In-Line Automated Inspection System for Quality Improvement of Electronic Parts (전자부품의 품질향상을 위한 인라인 자동검사시스템)

  • Jung, Won;Chung, Yun Koo
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.3
    • /
    • pp.33-44
    • /
    • 1995
  • This paper presents an automated visual inspection system for the electronic parts manufacturing process. In this system, a statistical process control (SPC) method is integrated into the automated inspection method on a real time base. It shows how the collected data can be analyzed with the SPC to provide process information. Also presented are studies of subpixel image processing technology to improve the accuracy of parts measurements, and the cumulative-sum (CUSUM) control chart for fraction defectives. An application of the developed system to connector manufacturing process as a part of computer integrated manufacturing (CIM) is presented.

  • PDF

Development of an Automated Shaft Outside Diameter Measuring System (레이저 광학 장비와 컴퓨터를 이용한 자동측정 장치의 개발)

  • 최상민;이정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.197-199
    • /
    • 1986
  • To meet tight tolerance requirements of mass produced shafts which are subcomponents of automobile parts, an automated measuring system has been developed. The system comprises of a non-contact shaft diameter measuring instrument using laser, a feed mechanism of a step motor and ball screw and a personal computer. The system can determine pass-fail of the piece under test and also analyze data for statistical process control.

  • PDF

Selection of Main Factors by Experimental Analysis for Profile Blast Machining Based on Microparticle Blasting Equipment with a Two-Axis Sequence Control Stage (2축 시퀀스 제어 스테이지와 미세입자 분사장치에 의한 형상 분사가공시 실험계획법에 의한 주요인자 검출)

  • Hwang, Chul-Woong;Lee, Sea-Han;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.64-69
    • /
    • 2020
  • To determine the effective factors for microparticle blasting with precise sequence position control in the x-axis and y-axis directions, we conducted a statistical experimental analysis of blasted square shapes by considering five condition factors. The control input and output were operated simultaneously by rotation-linear motion conversion and fine particles were blasted onto the aluminum specimen by precise position control driving using multiple execution codes. The micro-driving device used for processing was capable of microparticle blasting and of controlling the system through contact with a limit sensor at high speed and a two-degree-of-freedom driving mechanism. Our experiments were conducted on 1,050 specimens of pure aluminum (containing <1% of other elements). The effects of several factors (e.g., particle and nozzle diameters, blasting pressure, and federate and blasting cycle numbers) on the surface roughness and blasted surface's depth were verified through a statistical experimental analysis by applying the dispersion analysis method. This statistical analysis revealed that the nozzle diameter, the blasting pressure, and the blasting cycle number were the dominant factors.

TMMi Level 5 Quality Control Process Implementation Strategy (TMMi 레벨 5 품질 관리 프로세스 구축 방안)

  • Choi, Seunghee;Kim, Harksoo;Lee, Gooyeon
    • Journal of KIISE:Software and Applications
    • /
    • v.41 no.8
    • /
    • pp.533-544
    • /
    • 2014
  • The hardware-based software has been loaded in almost all industrial fields including the embedded system field. As it is increasingly important to control product quality, the more businesses are expending great quality cost. However, most domestic corporations in Korea are bent on spending more money solving problems caused by poor quality rather than prevention of quality loss cost. Therefore, it's time to improve to use quality prevention cost efficiently. As for this, there has been a growing interest in controlling quantitative quality, but the managing activities for quantitative quality require a high maturity process, belonging to Level 4 and 5. So it is necessary that statistical quality control activities should be fulfilled. This study introduces various measures to build up quality control among the process areas of TMMi Level 5 to help establish the high maturity test processes of statistical quality control.