• Title/Summary/Keyword: A Foundation Stone

Search Result 149, Processing Time 0.023 seconds

Transformation characteristics of stylobate and staircase of post-lintel Construction of Backje and Silla Style (백제계 및 신라계 가구식 기단과 계단의 시기별 변화특성)

  • Nam, Chang-Keun;Kim, Tai-Young
    • Journal of architectural history
    • /
    • v.21 no.1
    • /
    • pp.99-118
    • /
    • 2012
  • This study aims to classify the architectural formation of the Stylobate of and Staircase types of Post-Lintel Construction in Backje style and Silla style and also to figure out their specific elements by periods and transformation characteristics. The scope of this study was restricted to architectural remains between the Three Kingdom period and the Goryeo period. To progress the investigation, the study classified remains in a similar type by period and type, and then and analyzed its character based on formation method and specific factors of subsidiary materials. As a result, its type can be classified as Backje type(I), Silla type(II) and Mixed type(III). Regionally, it is found that Woongjin, Sabi and surroundings in the capital of Backje, Gyeongju and main towns in the capital of Silla, and Gaeseong and main towns in the capital of Goryeo. In particular, type III has the characteristics of type I and II simultaneously, which has one or two layers Jangdaeseok stone between the foundation stone of stylobate and plate stone, and tends to be decorative when Taengjuseok stone is installed. For types of staircase, it could be classified as 6~7C Backje type(I), 7~9C Silla type(II) and 9C Mixed type(III) according to the formation method of Somaetdol (banister of stone stair). And from the 9th century on, decorated Somaetdol stone type(IV) of 1/4 circle shape began to appear. The common feature of stylobate of post-lintel and staircase is that it became simplified, abbreviated and decorative. It seems to be intended to secure simplicity of construction or structural stability.

A Study on the Characteristics of the Haeeumwonji and the Main Palace of the Goryo Dynasty (혜음원지와 고려 정궁지 건축유구의 특성에 대한 고찰)

  • Woo, Seong-Hoon
    • Journal of architectural history
    • /
    • v.27 no.6
    • /
    • pp.31-40
    • /
    • 2018
  • This paper is to clarify on the characteristics of the Haeeumwonji and the Main Palace of the Goryo Dynasty. The architectural techniques and construction methods such as embankment, stylobate, stairway, foundation stone, and pave are similar to those of the Haeeumwonji and the Main Palace of the Goryo Dynasty. In order to express the hierarchy of the area and building, the materials, techniques, and forms of the embankment, stylobate, stairway, foundation stone and pave were used differently. The paving of the floor of the main building and area is also an active expression of the hierarchy and status of the building area and the building through the use of building materials, techniques and forms. This result confirms the support of Goryeo royal family and the upper class for the construction of Haeeumwonji, which is recorded in the historical documents. And it also shows that the architectural techniques and processing method of the same period were shared in the capital and provinces, which is an important clue that proves that the capital-centered architectural technology has spread to the provinces. It is expected that additional research will be needed on the characteristics of the period of 12th century architecture technique in which Haeeumwonji was built.

Interpretation of Construction Technique by Compositional Analysis of Soil Stratum with Basement at the Mireuksaji Stone Pagoda (미륵사지 석탑 축기부 토층의 조성분석을 통한 제작기법 해석)

  • Yi, Jeong-Eun;Lee, Chan-Hee;Lee, Dong-Sik
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.237-253
    • /
    • 2012
  • The Mireuksaji stone pagoda is constructed Baekje Period in the 7th century which is located in Iksan, Korea. This stone pagoda designated by National Treasure No. 11 is the only remaining pagoda. This pagoda has lost the original form in part and the whole stonework wase dismantled. Work for the restoration is currently in progress. This study was divided into soil strata such as construct layer of the temple site, foundation layer of the pagoda basement, and construct layer of the stylobate by stratum to interpretation the skill of rammed earth and making techniques. The of physical, mineralogical and geochemical characteristics of soil samples were identified. Five pieces of soil in and around the Mireuksaji temple site was selected for the comparative study to interpretate the mutual homogeneity among soil stratum. As a result, artificial addition has not been identified in all soil samples using rammed earth. The soils used for the basement of the stone pagoda (construct layer of the temple site, foundation layer of the pagoda basement, construct layer of the stylobate) were confirmed to be the same origin as soil in and around Mireuksaji temple site. Thus these results indicate that the basement of the pagoda was constructed using soils in and around the Mireuksaji temple site without work as careful selection.

Resistivity Survey on Stylobate of Five-story Stone Pagoda in Tamni-ri, Uiseong (의성 탑리리 오층석탑 기단부 전기비저항 탐사)

  • Oh, Hyundok;Kwon, Moonhee
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.4
    • /
    • pp.253-260
    • /
    • 2020
  • The five-story stone pagoda in Tamni-ri located in Uiseong County in Gyeongsangbuk-do had an unstable upper structure, and the structural deformation of the foundation stone and the stylobate was severe. In order to repair the base of the pagoda, it must be confirmed if there are support stones inside the base. Resistivity survey was performed to study the inner base stone structure during the repair work. The stylobate was exposed soil and broken stones after removing the walls and the cover of the stylobate. Modified pole-dipole array II was used for the resistivity survey, and compared with the typical pole-dipole array method. And in this study, a physical scale-down model experiment was performed to compare and analyze distortions caused by severe topographical undulations such as right-angled lines. The results show that the stylobate of Five-story Stone Pagoda in Tamni-ri Uiseong has base stones inside the reinforced filling soil and are located beneath the pillar of the body and supporting the pagoda.

Reinforcement of Soft Soil Subgrade for High-Speed Railroad Using Geocell (연약지반상 고속철도 노반 축조시 지오셀 시스템의 효과)

  • 김진만;조삼덕;윤수호;정문경;김영윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.129-141
    • /
    • 1999
  • This paper presents the results of plate load test and dynamic load test performed to evaluate the performance of geocell where it is used to reinforce soft subgrade for high-speed railroad. Efficacy of geocell was observed in increase in bearing capacity of subgrade and reduction of thickness of reinforced sub-ballast. Plate load tests were carried out at four different places with varying foundation soil strength as a function of number of geocell layer, type of filler material, thickness of cover soil, and the presence of non-woven geotextile. Dynamic load tests were performed in a laboratory. The test soil chamber consists of, from the bottom, 50 cm thick clayey soil, one layer of geocell filled with crushed stone, 10 cm thick crushed stone cover, reinforced sub-ballast of varying thickness, 35 cm thick ballast. This configuration was determined based on the results of numerical analysis and plate load tests. For each set of the dynamic load tests, loads were applied more than 80,000 times. One layer of geocell underlying a 10 cm thick cover soil led to an increase in bearing capacity three to four times compared to a crushed stone layer of the same thickness substituted for the geocell and cover soil layer. Given the test conditions, the thickness of reinforced sub-ballast can be reduced by approximately 35 cm with the presence of geocell.

  • PDF

Seismic assessment and retrofitting measures of a historic stone masonry bridge

  • Rovithis, Emmanouil N.;Pitilakis, Kyriazis D.
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.645-667
    • /
    • 2016
  • The 750 m long "De Bosset" bridge in the Cephalonia Island of Western Greece, being the area with the highest seismicity in Europe, was constructed in 1830 by successive stone arches and stiff block-type piers. The bridge suffered extensive damages during past earthquakes, such as the strong M7.2 earthquake of 1953, followed by poorly-designed reconstruction schemes with reinforced concrete. In 2005, a multidisciplinary project for the seismic assessment and restoration of the "De Bosset" bridge was undertaken under the auspices of the Greek Ministry of Culture. The proposed retrofitting scheme combining soil improvement, structural strengthening and reconstruction of the deteriorated masonry sections was recently applied on site. Design of the rehabilitation measures and assessment of the pre- and post-interventions seismic response of the bridge were based on detailed in-situ and laboratory tests, providing foundation soil and structural material properties. In-situ inspection of the rehabilitated bridge following the strong M6.1 and M6.0 Cephalonia earthquakes of January 26th and February 3rd 2014, respectively, revealed no damages or visible defects. The efficiency of the bridge retrofitting is also proved by a preliminary performance analysis of the bridge under the recorded ground motion induced by the above earthquakes.

A study on the structure of the Three storied Stone pagoda in Gameunsa Temple site (감은사지 삼층석탑 구조)

  • Nam, si-jin
    • Korean Journal of Heritage: History & Science
    • /
    • v.38
    • /
    • pp.329-358
    • /
    • 2005
  • The Three storied Stone pagoda in Gameunsa Temple site, one of the early staged stone pagodas, has been known as a standard for Silla stone pagodas. A stone pagoda is not only a stone art work and but also a stone structure. Most studies and investigation of the stone pagoda has done mainly based on style and chronological research according to an art historical view. However, there is not an attempt to research the stone pagoda as a stone architecture. Most Korean experts at the stone pagoda has art history in their background. Engineers who can understand the structure of the stone pagoda are very limited. More architectural and engineering approach is need to research not only art historial understanding but also safety as a structure. We can find many technical know-how from our ancestors who made stone pagodas. 1. To reduce any deformation such as relaxation and sinking of BuJae which is caused by a heavy load, the BuJae (consist of a foundation stone and lower stereobates) should be enlarged. 2. A special construction method for connection between Myonsuk and Tangjoo was invented. This unique method is not used any longer after the Three storied Stone pagoda in Gameunsa Temple site. 3. The upper BuJae and the lower BuJae are missed each other by making a difference of Okgaesuk and Okgaebatchim in size. It is done for a distribution of perpendicular load and a prevention for relaxation of BuJae. 4. The center of gravity in the BuJae is located to the center of the stone pagoda by trimming the upper surface of the Okgaebatchim into a convex shape. The man who made stone pagodas had excellent knowledge on the engineering and techniques to understand the structure of the stone pagodas. We can confirm it as follows: the enlarged BuJae, dislocated connection between upper Bujae and lower BuJae, and moving the center of gravity close to the center of the stone pagoda.

Foundation Methods for the Soft Ground Reinforcement of Lightweight Greenhouse on Reclaimed Land: A review (간척지 온실 기초 연약지반 보강 방법에 대한 고찰)

  • Lee, Haksung;Kang, Bang Hun;Lee, Su Hwan
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.440-447
    • /
    • 2020
  • The demand for large-scale horticultural complexes utilizing reclaimed lands is increasing, and one of the pending issues for the construction of large-scale facilities is to establish foundation design criteria. In this paper, we tried to review previous studies on the method of reinforcing the foundation of soft ground. Target construction methods are spiral piles, wood piles, crushed stone piles and PF (point foundation) method. In order to evaluate the performance according to the basic construction method, pull-out resistance, bearing capacity, and settlement amount were measured. At the same diameter, pull-out resistance increased with increasing penetration depth. Simplified comparison is difficult due to the difference in reinforcement method, diameter, and penetration depth, but it showed high bearing capacity in the order of crushed stone pile, PF method, and wood pile foundation. In the case of wood piles, the increase in uplift resistance was different depending on the slenderness ratio. Wood, crushed stone pile and PF construction methods, which are foundation reinforcement works with a bearing capacity of 105 kN/㎡ to 826 kN/㎡, are considered sufficient methods to be applied to the greenhouse foundation. There was a limitation in grasping the consistent trend of each foundation reinforcement method through existing studies. If these data are supplemented through additional empirical tests, it is judged that a basic design guideline that can satisfy the structure and economic efficiency of the greenhouse can be presented.

A Study on Structural Maintenance of 'Old Wall' Designated as National Registered Cultural Heritage (국가등록문화재로 지정된 옛 담장의 정비 양상)

  • So, Hyun-Su;Jeong, Myeong-Seok
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.1
    • /
    • pp.21-34
    • /
    • 2023
  • This study identified the materials and construction methods of 'Old Wall' in 13 villages which were designated as National Registered Cultural Heritage at the time of designation and examined the their structural changes based on field survey. The results are as follows: First, the 'Old Wall' consisted of 10 Soil-Stone Wall and 5 Stone Wall. At the time of designation, Stone Wall, which was built irregularly by dry-construction of natural stones, is similar in shape, but Soil-Stone Wall showed difference by the construction method of making used stones, joints, and faces. Second, the study extracted the changes of 'Old Wall' by repair and examined the changes of construction methods as well as the substitution and addition of materials of structure. The wall-roof was built with cement roof-tile and asbestos slate which have the advantage improve durability and cost-effectiveness. In addition, tile-mouth soil was added to korean traditional roof-tile to prevent rainwater from flowing in. Besides, to improve constructional convenience, the natural stone of the wall-body was replaced with blast stone, float stone and cut stone. Cement block, cement brick and cement mortar were frequently used to repair as well. As Soil-Stone Wall was transformed from irregular pattern-construction to comb pattern-construction and wet-construction was changed to dry-construction, it caused landscape and structural problems. Also, the layer of cement mortar applied to wall-foundation blocked the flow of rainwater that was induced by dry-construction of natural stones. Third, the study regarded that the problem with the repair of 'Old Wall' may occur as it is located in living space, because the owner of the wall could repair for the minor damages without technical knowledge. In addition, it is difficult for repair companies in charge of maintenance of Cultural Heritage to supply local materials, and it is differential construction specifications are not applied.

A Study on the Stability of Subsidence for the Foundation of Rectangular Pyramid (사각 피라미드 기초의 침하 안정성에 관한 연구)

  • Kim, Seong-Pil;Kim, Doo-Hwan;Song, Kwan-Kwon;Lee, Ki-Sun;Kim, Jeong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.83-89
    • /
    • 2018
  • In this study, the settlement of concrete rectangular pyramid foundation on soft ground is investigated based on a finite element analysis. considering the grounding load and the grounding area of square pyramid foundation, we compensate the insufficient design bearing capacity and investigated the effect of settlement by load. Based on this study, it is found that the rectangular pyramid foundation shows the smallest settlement of three different type of foundations. As a result of this study, it was resulted that the square pyramid foundations were more effective than the crushed stone foundations by 18%. These results show that the ground pressures of the square pyramid bases are divided into horizontal and vertical stresses, so it is analyzed that the horizontal stress builds up the rigid ground on the foundation of the structure and distributes the load widely to increase the resistance to the overhead load.