• 제목/요약/키워드: A Feature Analysis

검색결과 3,568건 처리시간 0.032초

특성 지향의 제품계열분석 모델의 정형적 정의와 일관성 분석 (Formal Definition and Consistency Analysis of Feature-Oriented Product Line Analysis Model)

  • 이관우
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권2호
    • /
    • pp.119-127
    • /
    • 2005
  • 제품계열분석(product line analysis)은 제품계열자산(product line asset)을 개발하기에 앞서, 제품계열 내에 속한 제품들의 다양한 요구사항과 이들 간의 관계 및 제약사항을 분석하는 활동을 말한다. 지금까지 특성모델링(feature modeling)이라 불리는 특성 지향의 공통성과 가변성 분석은 제품계열분석의 핵심적인 부분으로 간주되어 왔다. 비록 공통성과 가변성 분석이 제품계열분석의 핵심적인 요소이지만, 이것만으로는 재사용가능하고 적응성이 뛰어난 제품계열자산(예, 아키텍처와 컴포넌트) 개발에 한계가 있다. 특성간의 의존성 및 특성결합시간도 제품계열자산 개발에 중대한 영향을 미치는 요소이다. 따라서 본 논문에서는 기존에 공통성과 가변성 관점에서 제품계열을 분석한 결과인 특성모델(feature model)을 세 가지의 특성 측면(즉, 제품특성의 공통성과 가변성, 특성간의 의존성, 그리고 특성결합시간)으로 확장한 특성지향의 제품계열분석 모델을 제안한다. 특히, 세 가지 측면의 일관성을 검증하기 위해서, 특성 지향의 제품계열분석 모델을 정형적으로 정의하고, 모델의 일관성을 검사하는 규칙을 제공한다.

얼굴인식을 위한 판별분석에 기반한 복합특징 벡터 구성 방법 (Construction of Composite Feature Vector Based on Discriminant Analysis for Face Recognition)

  • 최상일
    • 한국멀티미디어학회논문지
    • /
    • 제18권7호
    • /
    • pp.834-842
    • /
    • 2015
  • We propose a method to construct composite feature vector based on discriminant analysis for face recognition. For this, we first extract the holistic- and local-features from whole face images and local images, which consist of the discriminant pixels, by using a discriminant feature extraction method. In order to utilize both advantages of holistic- and local-features, we evaluate the amount of the discriminative information in each feature and then construct a composite feature vector with only the features that contain a large amount of discriminative information. The experimental results for the FERET, CMU-PIE and Yale B databases show that the proposed composite feature vector has improvement of face recognition performance.

Design of a Feature-based Multi-viewpoint Design Automation System

  • Lee, Kwang-Hoon;McMahon, Chris A.;Lee, Kwan-H.
    • International Journal of CAD/CAM
    • /
    • 제3권1_2호
    • /
    • pp.67-75
    • /
    • 2003
  • Viewpoint-dependent feature-based modelling in computer-aided design is developed for the purposes of supporting engineering design representation and automation. The approach of this paper uses a combination of a multi-level modelling approach. This has two stages of mapping between models, and the multi-level model approach is implemented in three-level architecture. Top of this level is a feature-based description for each viewpoint, comprising a combination of form features and other features such as loads and constraints for analysis. The middle level is an executable representation of the feature model. The bottom of this multi-level modelling is a evaluation of a feature-based CAD model obtained by executable feature representations defined in the middle level. The mappings involved in the system comprise firstly, mapping between the top level feature representations associated with different viewpoints, for example for the geometric simplification and addition of boundary conditions associated with moving from a design model to an analysis model, and secondly mapping between the top level and the middle level representations in which the feature model is transformed into the executable representation. Because an executable representation is used as the intermediate layer, the low level evaluation can be active. The example will be implemented with an analysis model which is evaluated and for which results are output. This multi-level modelling approach will be investigated within the framework aimed for the design automation with a feature-based model.

Two Dimensional Slow Feature Discriminant Analysis via L2,1 Norm Minimization for Feature Extraction

  • Gu, Xingjian;Shu, Xiangbo;Ren, Shougang;Xu, Huanliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권7호
    • /
    • pp.3194-3216
    • /
    • 2018
  • Slow Feature Discriminant Analysis (SFDA) is a supervised feature extraction method inspired by biological mechanism. In this paper, a novel method called Two Dimensional Slow Feature Discriminant Analysis via $L_{2,1}$ norm minimization ($2DSFDA-L_{2,1}$) is proposed. $2DSFDA-L_{2,1}$ integrates $L_{2,1}$ norm regularization and 2D statically uncorrelated constraint to extract discriminant feature. First, $L_{2,1}$ norm regularization can promote the projection matrix row-sparsity, which makes the feature selection and subspace learning simultaneously. Second, uncorrelated features of minimum redundancy are effective for classification. We define 2D statistically uncorrelated model that each row (or column) are independent. Third, we provide a feasible solution by transforming the proposed $L_{2,1}$ nonlinear model into a linear regression type. Additionally, $2DSFDA-L_{2,1}$ is extended to a bilateral projection version called $BSFDA-L_{2,1}$. The advantage of $BSFDA-L_{2,1}$ is that an image can be represented with much less coefficients. Experimental results on three face databases demonstrate that the proposed $2DSFDA-L_{2,1}/BSFDA-L_{2,1}$ can obtain competitive performance.

특징추출을 위한 특이값 분할법의 응용 (The Application of SVD for Feature Extraction)

  • 이현승
    • 대한전자공학회논문지SP
    • /
    • 제43권2호
    • /
    • pp.82-86
    • /
    • 2006
  • 패턴인식 시스템은 일반적으로 데이터의 전처리, 특징 추출, 학습단계의 과정을 거쳐서 개발되어 진다. 그중에서도 특징 추출 과정은 다차원 공간을 가진 입력 데이터의 복잡도를 줄여서 다음 단계인 학습단계에서 계산 복잡도와 인식률을 향상시키는 역할을 한다. 패턴인식에서 특징 추출 기법으로써 principal component analysis, factor analysis, linear discriminant analysis 같은 방법들이 널리 사용되어져 왔다. 이 논문에서는 singular value decomposition (SVD) 방법이 패턴인식 시스템의 특징 추출과정에 유용하게 사용될 수 있음을 보인다. 특징 추출단계에서 SVD 기법의 유용성을 검증하기 위하여 원격탐사 응용에 적용하였는데, 실험결과는 널리 쓰이는 PCA에 비해 약 25%의 인식률의 향상을 가져온다는 것을 알 수 있다.

자동차 외판 특징선 곡면의 단면 형상 측정과 분석 (Measurement and Analysis of the Section Profile for Feature Line Surface on an Automotive Outer Panel)

  • 최원창;정연찬
    • 소성∙가공
    • /
    • 제24권2호
    • /
    • pp.107-114
    • /
    • 2015
  • The current study presents a geometric measurement and analysis of the section profile for a feature line surface on an automotive outer panel. A feature line surface is the geometry which is a visually noticeable creased line on a smooth panel. In the current study the section profile of a feature line surface is analyzed geometrically. The section profile on the real press panel was measured using a coordinate measuring machine. The section profiles from the CAD model and the real panel are aligned using the same coordinate system defined by two holes near the feature line. In the aligned section profiles the chord length and height of the curved part were measured and analyzed. The results show that the feature line surface on the real panel is doubled in width size.

입술영역 분할을 위한 CIELuv 칼라 특징 분석 (Analysis of CIELuv Color feature for the Segmentation of the Lip Region)

  • 김정엽
    • 한국멀티미디어학회논문지
    • /
    • 제22권1호
    • /
    • pp.27-34
    • /
    • 2019
  • In this paper, a new type of lip feature is proposed as distance metric in CIELUV color system. The performance of the proposed feature was tested on face image database, Helen dataset from University of Illinois. The test processes consists of three steps. The first step is feature extraction and second step is principal component analysis for the optimal projection of a feature vector. The final step is Otsu's threshold for a two-class problem. The performance of the proposed feature was better than conventional features. Performance metrics for the evaluation are OverLap and Segmentation Error. Best performance for the proposed feature was OverLap of 65% and 59 % of segmentation error. Conventional methods shows 80~95% for OverLap and 5~15% of segmentation error usually. In conventional cases, the face database is well calibrated and adjusted with the same background and illumination for the scene. The Helen dataset used in this paper is not calibrated or adjusted at all. These images are gathered from internet and therefore, there are no calibration and adjustment.

Real-Time Locomotion Mode Recognition Employing Correlation Feature Analysis Using EMG Pattern

  • Kim, Deok-Hwan;Cho, Chi-Young;Ryu, Jaehwan
    • ETRI Journal
    • /
    • 제36권1호
    • /
    • pp.99-105
    • /
    • 2014
  • This paper presents a new locomotion mode recognition method based on a transformed correlation feature analysis using an electromyography (EMG) pattern. Each movement is recognized using six weighted subcorrelation filters, which are applied to the correlation feature analysis through the use of six time-domain features. The proposed method has a high recognition rate because it reflects the importance of the different features according to the movements and thereby enables one to recognize real-time EMG patterns, owing to the rapid execution of the correlation feature analysis. The experiment results show that the discriminating power of the proposed method is 85.89% (${\pm}2.5$) when walking on a level surface, 96.47% (${\pm}0.9$) when going up stairs, and 96.37% (${\pm}1.3$) when going down stairs for given normal movement data. This makes its accuracy and stability better than that found for the principal component analysis and linear discriminant analysis methods.

Comparative Analysis of Building Models to Develop a Generic Indoor Feature Model

  • Kim, Misun;Choi, Hyun-Sang;Lee, Jiyeong
    • 한국측량학회지
    • /
    • 제39권5호
    • /
    • pp.297-311
    • /
    • 2021
  • Around the world, there is an increasing interest in Digital Twin cities. Although geospatial data is critical for building a digital twin city, currently-established spatial data cannot be used directly for its implementation. Integration of geospatial data is vital in order to construct and simulate the virtual space. Existing studies for data integration have focused on data transformation. The conversion method is fundamental and convenient, but the information loss during this process remains a limitation. With this, standardization of the data model is an approach to solve the integration problem while hurdling conversion limitations. However, the standardization within indoor space data models is still insufficient compared to 3D building and city models. Therefore, in this study, we present a comparative analysis of data models commonly used in indoor space modeling as a basis for establishing a generic indoor space feature model. By comparing five models of IFC (Industry Foundation Classes), CityGML (City Geographic Markup Language), AIIM (ArcGIS Indoors Information Model), IMDF (Indoor Mapping Data Format), and OmniClass, we identify essential elements for modeling indoor space and the feature classes commonly included in the models. The proposed generic model can serve as a basis for developing further indoor feature models through specifying minimum required structure and feature classes.

PCA와 입자 군집 최적화 알고리즘을 이용한 얼굴이미지에서 특징선택에 관한 연구 (A Study on Feature Selection in Face Image Using Principal Component Analysis and Particle Swarm Optimization Algorithm)

  • 김웅기;오성권;김현기
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2511-2519
    • /
    • 2009
  • In this paper, we introduce the methodological system design via feature selection using Principal Component Analysis and Particle Swarm Optimization algorithms. The overall methodological system design comes from three kinds of modules such as preprocessing module, feature extraction module, and recognition module. First, Histogram equalization enhance the quality of image by exploiting contrast effect based on the normalized function generated from histogram distribution values of 2D face image. Secondly, PCA extracts feature vectors to be used for face recognition by using eigenvalues and eigenvectors obtained from covariance matrix. Finally the feature selection for face recognition among the entire feature vectors is considered by means of the Particle Swarm Optimization. The optimized Polynomial-based Radial Basis Function Neural Networks are used to evaluate the face recognition performance. This study shows that the proposed methodological system design is effective to the analysis of preferred face recognition.