• Title/Summary/Keyword: A Biomass

Search Result 3,830, Processing Time 0.032 seconds

Aluminum Complexation and Precipitation with Seaweed Biosorbent

  • Lee, Hak-Sung;Kim, Young-Tae
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제2권1호
    • /
    • pp.1-8
    • /
    • 1998
  • Biomass of non-living brown seaweed Sargassum fluitans pretreated by different methods is capable of taking up more than $10\%$ (11 meq/g) of its dry weight in aluminum at a pH of 4.5. It is indicated that the biomass sequestered the aluminum in the form of polynuclear aluminum species. The fraction of $Al(OH)_3$ Precipitated in the aluminum nitrate solution without biomass at pH 4.5 increased as the Al concentration increased. Aluminum-alginate complex precipitated in the solution as alginate was partially released from the biomass. External colloidal precipitate occurring in native and protonated S. fluitans biomass sorption systems caused a significant difference in Al sorption isotherms determined by standard and desorption methods, respectively, Sodium ions added for pH adjustment were not sorbed at all in the presence of aluminum ions.

  • PDF

바이오매스용 해조류 대량 양식을 위한 자동화 시스템 개발 (Development of The Automation System for Seaweed Biomass Mass Production)

  • 최국진
    • 한국산업융합학회 논문집
    • /
    • 제23권2_2호
    • /
    • pp.351-359
    • /
    • 2020
  • The algae biomass is considered as one of the potential sources of ocean renewable energy because it can be easily mass-produced with abundant sunshine in the vast ocean space. However, the practical use of the biomass has been hindered by the lack of efficient and cost-effective harvesting and maintenance system so far. The algae biomass aquaculture systems are installed in far offshore locations in much larger scales compared to the conventional aquaculture systems so that the automatic seaweed planting and harvesting system needs to operate in heavy sea conditions in far offshore location. In this research, we develop a concept design of a mega-scaled aquaculture system and an automatic seaweed planting and harvesting system, which can operate in heavy seas and mass-produce the algae biomass.

Study on Aboveground Biomass of Pinus sylvesris var. mongolica Plantation Forest in Northeast China Based on Prediction Equations

  • Jia, Weiwei;Li, Lu;Li, Fengri
    • Journal of Forest and Environmental Science
    • /
    • 제28권2호
    • /
    • pp.68-74
    • /
    • 2012
  • A total of 45 Pinus sylvestnis var. mongolica trees from 9 plots in northeast China were destructively sampled to develop aboveground prediction equations for inventory application. Sampling plots covered a range of stand ages (12-47-years-old) and densities (450-3,840/ha). The distribution of aboveground biomass of whole-trees and tree component (stems, branches and leaves) of individual trees were studied and 4 equations were developed as functions of diameter at breast height (DBH), total height (HT). All the equations have good estimation effect with high prediction precision over 90%. Forest biomass was estimated based on the individual biomass prediction equations. It was found forest biomass of all organs increased with the increasing of stand age and density. And the period of 45-50 years was the suitable harvest time for Pinus sylvesris plantation.

저급탄 석탄화력 및 석탄-바이오매스 혼소 발전을 위한 연소 기술 (Combustion Technology for Low Rank Coal and Coal-Biomass Co-firing Power Plant)

  • 이동훈;고대호;이선근;백구열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.129-132
    • /
    • 2013
  • The low rank coal combustion and biomass-coal co-firing characteristics were reviewed on this study for the power plant construction. The importance of using low rank coal(LRC) for power plant is increasing gradually due to power generation economy and biomass co-firing is also concentrated as power source because it has carbon neutral characteristics to reduce green-house effect. The combustion characteristics of low rank coal and biomass for a 310MW coal firing power plant and a 100MW biomass and coal co-firing power plant were studied to apply into actual power plant design and optimized the furnace and burner design.

  • PDF

바이오매스 발전시 염소가스에 의한 고온부식 (High-temperature Corrosion by Chlorides in Biomass-fired Plants)

  • 이동복
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.14-19
    • /
    • 2016
  • Biomass is a renewable and sustainable source of energy used to create electricity or pressurized steam. In biomass-fueled power plants, wood waste or other waste is burned to produce steam that runs a turbine to make electricity, or that provides heat to industries and homes. Biomass power plants, apart from producing energy, help to reduce the $CO_2$ emission. However, the main problem is the high-temperature corrosion due to fuel corrosivity, especially of the straw. This limits both the temperature of the steam and also the effectiveness of the power plant. The corrosion in biomass-fueled plant was described.

목질바이오매스 에너지 부산물(리그닌)이용에 관한 연구 동향 (A Research Trend on Utilization of the Byproducts(Lignin) from Bioethanol Production Process with Lignocellulosic Biomass: A Literature Review)

  • 김영숙
    • Journal of Forest and Environmental Science
    • /
    • 제27권3호
    • /
    • pp.183-194
    • /
    • 2011
  • This study reviewed on the research trend of sources and utilization of the byproducts(Lignin) from bioethanol production process with lignocellulosic biomass such as wood, agri-processing by-products(corn fiber, sugarcane bagasse etc.) and energy crops(switch grass, poplar, Miscanthus etc.). During biochemical conversion process, only Cellulose and hemicellulosic fractions are converted into fermentable sugar, but lignin which represents the third largest fraction of lignocellulosic biomass is not convertible into fermentable sugars. It is therefore extremely important to recover and convert biomass-derived Lignin into high-value products to maintain economic competitiveness of cellulosic ethanol processes. It was introduced that lignin types and characteristics were different from various isolation methods and biomass sources. Also utilization and potentiality for market of those were discussed.

백두산 동북부지역 소나무 천연림 biomass 추정모델 (Regression Model for Estimating Biomass of Natural Pinus densifrola Forests in Northeast Area of Mt. Paekdu)

  • 김영환;이돈구;맹헌우
    • 임산에너지
    • /
    • 제17권1호
    • /
    • pp.23-29
    • /
    • 1998
  • 중국 백두산 북부지역 소나무천연림을 대상으로 임분의 biomass를 추정하기 위하여 5개 등급 밀도별로 각각 7본씩 표본목을 선정하여 벌도한 후 4개의 상대생장식(W=aDb, W=a(D2H)b, logW=a b·logD+cD, logW=a+b·log(D2H)+c(D2H)을 이용하여 부위별로 biomass 추정식을 유도하였다. 밀도가 다른 임분에서 부위별로 적합한 biomass 추정식 유형이 다르게 나타났는데 줄기, 수피 및 지상부 전체 biomass량을 추정하는 경우, logW=a+b·log(D2H)+c(D2H)식이 결정계수는 높고 상대오차 추정치는 낮게 나타나 적합도가 높았다. 가지, 잎 biomass량 및 엽면적의 경우는 logW=a+b·logD+cD식이 상관계수가 높고 상대오차 추정치는 낮게 나타나 적합하였다.

  • PDF

Chemical Compositions of Primary PM2.5 Derived from Biomass Burning Emissions

  • Ichikawa, Yujiro;Naito, Suekazu
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권2호
    • /
    • pp.79-95
    • /
    • 2017
  • A number of field studies have provided evidence that biomass burning is one of the major global sources of atmospheric particles. In this study, we have collected $PM_{2.5}$ emitted from biomass burning combusted at open burning and laboratory chamber situations. The open burning experiment was conducted with the cooperation of 9 farmers in Chiba Prefecture, Japan, while the chamber experiment was designed to evaluate the characteristics of chemical components among 14 different plant species. The analyzed categories were $PM_{2.5}$ mass concentration, organic carbon (OC), elemental carbon (EC), ionic components ($Na^+$, ${NH_4}^+$, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $Cl^-$, ${NO_3}^-$ and ${SO_4}^{2-}$), water-soluble organic carbon (WSOC), water-insoluble inorganic carbon (WIOC), char-EC and soot-EC. OC was the dominant chemical component, accounting for the major fraction of primary $PM_{2.5}$ derived from biomass burning, followed by EC. Ionic components contributed a small portion of $PM_{2.5}$, as well as that of $K^+$. In some cases, $K^+$ is used as biomass burning tracer; however, the observations obtained in this study suggest that $K^+$ may not always be suitable as a tracer for biomass burning emissions. Also, the results of all the samples tested indicate relatively low values of char-EC compared to soot-EC. From our results, careful consideration should be given to the usage of $K^+$ and char-EC as indicators of biomass burning. The calculated ratios of WSOC/OC and WIOC/OC were 55.7% and 44.3% on average for all samples, which showed no large difference between them. The organic materials to OC ratio, which is often used for chemical mass closure model, was roughly estimated by two independent methods, resulting in a factor of 1.7 for biomass burning emissions.

Biomass of Bacterioplankton and Protists and Their Ecological Importance in the Bering Sea

  • He, Jianfeng;Chen, Bo;Kang, Sung-Ho;Zeng, Yinxin;Cai, Minghong
    • Ocean and Polar Research
    • /
    • 제26권2호
    • /
    • pp.113-120
    • /
    • 2004
  • The abundance, biomass and distribution of phytoplankton, bacterioplankton and heterotrophic protists in the Bering Sea were investigated from July to August 1999. Chlorophyll a concentrations in the surface waters ranged from 0.16 to $3.79{\mu}g\;l^{-1}$ Nano-phytoplankton were found to constitute from 63 to 98% of the total phytoplankton biomass, and were clearly the dominant primary producers. The biomass of bacterioplankton in the surface layers varied from 1.46 to $20.2{\mu}g\;C\;l^{-1}$ and accounted for 30% of the total phytoplankton biomass. The biomass of bacterioplankton integrated over a depth of 0 to 100m averaged 65.4% of the total phytoplankton biomass. The surface biomass of heterotrophic protists ranged from 1.2 to $27.4{\mu}g\;C\;l^{-1}$, and was within the same order of magnitude as that of bacterioplankton. Of the total biomass of heterotrophic protists in the upper 100m of the water column, 65% was attributed to protists in the nano-size class. The results of this study suggest that bacteria and nano-protists are important components of the planktonic community in the Bering Sea during the summer season. The abundance of bacterioplankton and planktonic protists decreased from the western to northeastern and eastern regions of the Bering Sea. The abundance of these organisms also decreased with depth. The available evidence suggests that variation in the abundance and distribution of these organisms may be affected by water currents and vertical temperature variation in the Bering Sea.

Estimation of unused forest biomass potential resource amount in Korea

  • Sangho Yun;Sung-Min Choi;Joon-Woo Lee;Sung-Min Park
    • 농업과학연구
    • /
    • 제49권2호
    • /
    • pp.317-330
    • /
    • 2022
  • Recently, the policy regarding climate change in Korea and overseas has been to promote the utilization of forest biomass to achieve net zero emissions. In addition, with the implementation of the unused forest biomass system in 2018, the size of the Korean market for manufacturing wood pellets and wood chips using unused forest biomass is rapidly expanding. Therefore, it is necessary to estimate the total amount of unused forest biomass that can be used as an energy source and to identify the capacity that can be continuously produced annually. In this study, we estimated the actual forest area that can be produced of logging residue and the potential amount of unused forest biomass resources based on GT (green ton). Using a forest functions classification map (1 : 25,000), 5th digital forest type map (1 : 25,000), and digital elevation model (DEM), the forest area with a slope of 30° or less and mountain ridges of 70% or less was estimated based on production forest and IV age class or more. The total forest area where unused forest biomass can be produced was estimated to be 1,453,047 ha. Based on GT, the total amount of unused forest biomass potential resources in Korea was estimated to be 117,741,436 tons. By forest type, coniferous forests were estimated to be 48,513,580 tons (41.2%), broad-leaved forests 27,419,391 tons (23.3%), and mixed forests 41,808,465 tons (35.5%). Data from this research analysis can be used as basic data to estimate commercial use of unused forest biomass.