• 제목/요약/키워드: A : Fresh autogenous bone

검색결과 7건 처리시간 0.021초

Autogenous fresh demineralized tooth graft prepared at chairside for dental implant

  • Kim, Eun-Seok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제37권
    • /
    • pp.8.1-8.6
    • /
    • 2015
  • Background: This study aimed to evaluate the clinical usefulness of autogenous fresh demineralized tooth (auto-FDT) graft prepared at the chairside for alveolar bone grafting during dental implant surgery. Methods: In total, 38 patients requiring both tooth extraction (for endodontic or periodontal reasons or third molar extraction) and alveolar bone regeneration for dental implant placement were included. Within 2 h after clean extraction, the teeth were prepared at the chairside to serve as bone graft material. In the same sitting, blocks or chips of this graft material were used to reconstruct defects at the osteotomy site simultaneously with or before implant placement. Twelve months after prosthesis fabrication and placement, the clinical findings and implant success rates were evaluated. Histological studies were randomly conducted for selected cases. Results: Clinical evaluation showed favorable wound healing with minimal complications and good bone support for the implants. No implant was lost after 12 months of function following prosthetic rehabilitation. Histological examination revealed new bone formation induced by the graft material. Conclusions: Chairside preparation of autogenous fresh demineralized teeth after extraction can be a useful alternative to the use of autogenous bone or other graft materials for the immediate reconstruction of alveolar bone defects to facilitate subsequent implant placement.

즉시 탈회 치아이식재를 사용한 치조골 재건술 (Immediate Autogenous Fresh Demineralized Tooth (Auto-FDT) Graft for Alveolar Bone Reconstruction)

  • 이은영
    • 대한치과의사협회지
    • /
    • 제54권5호
    • /
    • pp.348-355
    • /
    • 2016
  • Ideal autogenous or allogenic bone graft materials should provide 1) stabilization of blood clot, 2) scaffolds for cellular proliferation and differentiation, 3) release of osteogenic growth factors, 4) appropriate resorption profile for remodeling of new bone. Teeth, especially dentin, mostly contain hydroxyapatite and type I collagen which are similar to bone, and could be valuable graft material. Clinically teeth are used as calcined or demineralized forms. Demineralized form of dentin can be more effective as a graft material. But a conventional decalcification method takes time and long treatment time may give negative effects to various osteogenic proteins in dentin. Author used a new clinical method to prepare autogenous teeth, which could be grafted into the removal defects immediately after extraction using vacuum ultrasonic system. The process could be finished within two hours regardless of the form (powder, chip or block). Teeth were processed to graft materials in block, chip, or powder types immediately after extraction. It took 120 minutes to prepare block types and 40 minutes to prepare powder. Clinical cases did not show any adverse response and the healing was favorable. Rapid preparation of autogenous teeth with the vacuum ultrasonic system could make the immediate one-day extraction and graft possible.

  • PDF

Various autogenous fresh demineralized tooth forms for alveolar socket preservation in anterior tooth extraction sites: a series of 4 cases

  • Kim, Eun-Suk;Lee, In-Kyung;Kang, Ji-Yeon;Lee, Eun-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제37권
    • /
    • pp.27.1-27.7
    • /
    • 2015
  • The aim of this study was to evaluate the clinical relevance of autogenous fresh demineralized tooth (Auto-FDT) prepared at chairside immediately after extraction for socket preservation. Teeth were processed to graft materials in block, chip, or powder types immediately after extraction. Extraction sockets were filled with these materials and dental implants were installed immediately or after a delay. A panoramic radiograph and a conebeam CT were taken. In two cases, tissue samples were taken for histologic examination. Vertical and horizontal maintenance of alveolar sockets showed some variance depending on the Auto-FDT and barrier membrane types used. Radiographs showed good bony healing. Histologic sections showed that it guided good new bone formation and resorption pattern of the Auto-FDT. This case series shows that Auto-FDT prepared at chairside could be a good material for the preservation of extraction sockets. This study will suggest the possibility of recycling autogenous tooth after immediate extraction.

가토 탈회 동종골편 이식시 조직반응에 관한 연구 (HISTOLOGICAL TISSUE RESPONSES OF DEMINERALIZED ALLOGENEIC BONE BLOCK GRAFT IN RABBITS)

  • 전영환;김영조;민승기;엄인웅;이동근
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제15권1호
    • /
    • pp.63-79
    • /
    • 1993
  • To repair bony defects with tansplanted bone in the body, fresh autogenous bone is undoubtly, the most effective bone graft for clinical applications. But the demineralized bone has the matrix-induced bone formation which was suggested by Urist in 1965. Many authors assisted that demineralized bone powder induces phenotypic conversion of mesenchymal cells into osteoblasts, with high-density bone formation. The process of inducing differentiated cells becomes osteogenic properties. The purpose of this study was to evaluate the osteoinductive capacity of allogenic freeze-dried demineralized bone block (FDD, $7{\times}7mm$) and to compare FDD with the same sue of deep-frozen allogenic bone(DF), fresh autogenous bone (A) after implantation. The histological and ultrastructural features of tissue responses were examined after 1, 2, 4, 6, 8 weeks implantation of each experimental groups in the operative site of the New Zealand white rabbits. The results were as follows : 1. Inflammatory cell infiltration generally has appeared at 1 week, but reduced at 4 weeks in each group, but most severe in DF group. 2. Osteoblastic activity has increased for 4 weeks, but decreased at 6 weeks in each group and there was no significant difference among experimental groups. 3. New bone formation has begun at 1week, least activations in A groups, and showed the revesal line of bone formation among each group at 6 to 8 weeks. 4. Bone resorption has appeared at 1 week, but disappeared at 4 weeks in both A and DF groups, but more severe in DF than A groups. 5. In ultrastructural changs, the DF group have showed the most remarkable osteoclastic activities among experimental groups. 6. Osteoid or tangled collagen fibrils near the implanted sites were replaced by more mature, lamellated bony trabeculae during bone remodeling. There was little difference among each experimental groups. 7. During the convertion osteoblasts to osteocytes which embedded within the bone matrix, there was organ-less-poor cytoplasm, increased nuclear chromatin, abundant rough endothelial reticulum (RER) in each groups. From the above the findings, the DF group shored more bone resorption and foreign body reaction than FDD and A groups, and FDD group showed more new bone formation or osteoblastic activity than DF and A groups in early stage. There was no significant difference of cellular activities among the FDD DF, and A groups according to the time.

  • PDF

자가 탈회골의 조직반응에 관한 실험적 연구 (EXPERIMENTAL STUDY ON HEALING PROCESS OF AUTOGENIC DEMINERALIZED BONE)

  • 이재은;이동근;엄인웅;김영조;김장언
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제15권3호
    • /
    • pp.199-210
    • /
    • 1993
  • Many surgeons are on the point of bone excision and reconstruction of the bone defects by autograft. xenograft, and allograft in the treatment of begin and malignant tumors of bone. Of all type of bone grafts, we received the autograft as the best ideal bone graft. Of autogenic bone graft, replantation of excised autogenic bone for reconstructiong the bone defects has been the ideal method until now, but early bone healing reponses and tumor cell devitalization after replantation of excised autogenic bone have not been identified for clinical applications. So, to evaluate bone healing response after replantation in rabbit's calvarial bone, we divided the experimental group into three groups. Group 1 is a fresh autogenous bone group. Group 2 is a deep frozen group. Group 3 is freeze-dried demineralized group. Obtained result were as followed: 1. Inflammatory cell infiltration appeared at I week and disappeared at 4 weeks in all experimental group, Especially, severe inflammatory cell infiltration showed in fresh autogenous bone group at 2 weeks. Group 3 is the least showing group on the point of inflammatory cell infiltration. 2. Osteoblastic activity evenly increased upto 4 weeks and maintained to 6 weeks and decreased after this period, especially osteoblastic activity in group 2 is less than group 1 and group 3. We can't discriminate between osteoblastic activity of group 1 and that of group 3. 3. In new bone formation, group 3 was more active than any other groups at early stage, but there were little differences among three experimental groups at later state. 4. Bone resorption around the grafted bone slightly appeared at 1 week and disappeared at 4 weeks in all experimental groups. We can find the more bone resorption in group 2 at 2 weeks than any other groups. We could suggest, as appears from our results, that freeze-dried deminiralized bone graft is the useful bone graft in the clinical applications of excised autogenic bone.

  • PDF

가토의 두개골 결손부에 이식한 human DBM ($Grafton^{(R)}$)의 효과 (THE EFFECT OF HUMAN DBM($GRAFTON^{(R)}$) GRAFT ON SKULL DEFECT IN THE RABBIT)

  • 김진욱;박인숙;이상한;김진수;장현중;권대근;김현수
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제28권2호
    • /
    • pp.118-126
    • /
    • 2006
  • In oral and maxillofacial surgery, bone graft is very important procedure for functional and esthetic reconstruction. So, many researcher studied about bone graft material like autogenous bone, allograft bone and artificial bone materials. The purpose of this study is to evaluate the quantity of bone generation induced by $Grafton^{(R)}$ graft, human allogenic demineralized bone matrix. Total 24 sites of artificial bony defects prepared using trephin bur(diameter 8 mm) on parietal bone of six adult New Zealand White rabbits. Experimental group had six defect sites which grafted $Grafton^{(R)}$(0.1 cc). Active control group had nine defect sites, into which fresh autogenous bone harvested from own parietal bone was grafted and passive control group had nine defect sites without bone graft. After six weeks postoperatively, the rabbits were sacrificed. The defects and surrounding tissue were harvested and decalcified in 10% EDTA, 10% foamic-acid. Specimens were stained with H&E. New bone area percentage in whole defect area was measured by IMT(VT) image analysis program. Quantity of bone by $Grafton^{(R)}$ graft was smaller than that of autograft and larger than that of empty defects. In histologic view $Grafton^{(R)}$ graft site and autograft site showed similar healing progress but it was observed that newly formed bone in active control group was more mature. In empty defect, quantity and thickness of new bone formation was smaller than in $Grafton^{(R)}$-grafted defect. $Grafton^{(R)}$ is supposed to be a useful bone graft material instead of autogenous bone if proper maintenance for graft material stability and enough healing time were obtained.

생체골의 열전도성 및 열처리된 골의 염전력 변화에 대한 실험적 연구 (Experimental Studies on Heat Conductivity of Human Bone and Torsional Strength of Pasteurized Porcine Tibia)

  • 박일형;김신근;신동규;인주철
    • 대한골관절종양학회지
    • /
    • 제1권1호
    • /
    • pp.7-16
    • /
    • 1995
  • 인체골 4 시편(specimen)과 돼지 경골 25쌍을 이용하여, 생체골의 열전도성 측정과 열처리후 열처리온도와 시간에 따른 골의 염전력을 실험한 결과를 요약하면 다음과 같다. 인체골에 있어서 골수강을 제거하지 않고 $60^{\circ}C$의 항온식염수에서 열처리하면, 골심부의 온도가 $20^{\circ}C$에서 $58^{\circ}C$에 도달하는데 소요된 시간은 경골근위부가 32분 50초, 대퇴골 원위부가 30.분, $80^{\circ}C$ 항온조에서는 경골근위부가 12분 50초, 대퇴골 원위부가 11분 10초 소요되었다. 돼지 경골간부의 피질골내부(endosteum)에 열전대를 부착하고 뼈 양끝을 밀봉하여 같은 실험을 행한 결과 $50^{\circ}C$까지는 시간에 비례해서 일정한 비율로 온도상승이 이루어 졌으며, $20^{\circ}C$에서 $58^{\circ}C$에 이르는 시간이 $60^{\circ}C$ 항온조에서는 7분, $70^{\circ}C$에서는 3분 30초, $80^{\circ}C$에서는 2분이었다. 따라서 임상에서 골수강을 제거 후 장골의 간부(shaft) 만을 항온조에 달굴때는 골구강내에도 데워진 심염수로 가득차게 되므로 상기 시간의 절반이 못되는 짧은 시간내에 피질골의 내부가 $58^{\circ}C$에 이르리라고 판단되었다. 골수강을 소파하지 않은 돼지 경골을 각각 4쌍씩 우측만을 $60^{\circ}C$ 35분, $80^{\circ}C$ 15분 열처리한 후 실험군의 최대염전력은 대조군과 비교할 때 +7.0%, -5.1%, -3.2%, -4.2%의 변화가 있었고, $80^{\circ}C$ 15분 열처리후는 -4.3%, -3.8%, -1.4%(1예는 실험 오류로 제외됨)의 변화가 있었다. 골수강을 완전 제거한 되재 경골을 각각 4쌍씩 우측만을 $60^{\circ}C$, $70^{\circ}C$, $80^{\circ}C$에서 15분 열처리 후 실험군의 최대염전력은 대조군과 비교할 때 -3.4%, -4.2%, -0.7%, +2.7%의 변화가 있었고, $70^{\circ}C$ 15분 열처리후는 -2.8%, -3.9%, -2.1%(1예는 실험 오류로 제외됨)의 변화가 있었으며, $80^{\circ}C$ 15분 열처리후는 +5.2%, -4.4%, -2.9%, -0.3%의 염전력 변화가 있었다. 그러므로 골수강을 제거하지 않고 $80^{\circ}C$ 35분, $60^{\circ}C$ 15분 열처리 하거나, 골수강을 완전소파 후 $60^{\circ}C$ 15분, $70^{\circ}C$ 15분, $80^{\circ}C$ 15분 열처리해서는 각군사이에 염전력의 유의한 차이는없었다. 이상의 결과로 돼지 경골의 경우 $60^{\circ}C$ 항온에서는 35분까지, $80^{\circ}C$이하의 항온에서는 15분까지 열처리하여도 골강도에는 거의 영향이 없는 것으로 나타났다.

  • PDF