• Title/Summary/Keyword: A/S ratio

Search Result 16,268, Processing Time 0.064 seconds

An Investigation Into 3-, 4-, and 5-Year-Old Children's Nonsymbolic Magnitude Comparison Ability According to Ratio Limit and Task Condition (비율제한 및 과제제시방법에 따른 3, 4, 5세 유아의 비상징 수 비교능력)

  • Cho, Woomi;Yi, Soon-Hyung
    • Korean Journal of Child Studies
    • /
    • v.38 no.1
    • /
    • pp.117-126
    • /
    • 2017
  • Objective: The purpose of this study was to investigate young children's nonsymbolic magnitude comparison ability according to ratio limit and task condition. Methods: The participants included 40 3-year-old children, 42 4-year-old children, and 41 5-year-old children recruited from 4 childcare centers located in Seoul, Korea. All magnitude comparison tasks were composed of image material tasks and concrete material tasks. In addition, each magnitude comparison task varied with the ratio of the two quantities; 0.5 ratio, 0.67 ratio, 0.75 ratio. Results and Conclusion: The results revealed that 3-, 4-, and 5-year-old children could perform nonsymbolic magnitude comparison tasks without learning experiences. Also, 3-, 4-, and 5-year-old children could perform concrete material tasks better than image material tasks in nonsymbolic magnitude comparison tasks. Furthermore, children's performance on nonsymbolic magnitude comparison tasks indicated the ratio signature of the approximate number system. Children have a degree of numerical capacity prior to formal mathematics instruction. Also, children were influenced by task conditions or sense stimulus when they processed numerical information. Furthermore, the approximate number system can be used in understanding the ordinality of number.

Concept Design of a H.A.U.'s Subsonic Wind Tunnel (H대학교 아음속 풍동 개념설계)

  • Chang, J.W.;Jeon, C.S.;Kim, M.S.;Lee, Y.;Moon, H.J.;Song, B.H.;Kim, H.B.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.4
    • /
    • pp.92-99
    • /
    • 2005
  • A closed-circuit type wind tunnel is designed, which has a test section with the dimensions $1.2(W){\times}1.2(H){\times}3.4(L)$. A subsonic wind tunnel is designed to improves educational circumstances and promote ground tests. It is constituted of an exchangeable test section, first and second diffusers, a fan, a settling chamber, a contraction, and 4 corners. The maximum velocity in the test section is 70m/s and the contraction ratio is 6.25:1. Input power in the wind tunnel is about 96.1 kw (128.8 hp) and its energy ratio is 3.89. It has the dimension of about $7.4(W){\times}3.6(H){\times}21.7m(L)$. The wind tunnel designed in this investigation will be an effective educational and investigational equipment.

  • PDF

Structural and optical properties of $CuInS_2$ thin films fabricated by electron-beam evaporation (전자빔 층착으로 제조한 $CuInS_2$ 박막의 구조적 및 광학적 특성)

  • 박계춘;정운조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.193-196
    • /
    • 2001
  • Single phase CuInS$_2$ thin film with the highest diffraction peak (112) at diffraction angle (2$\theta$) of 27.7$^{\circ}$ and the second highest diffraction peak (220) at diffraction angle (2$\theta$) of 46.25$^{\circ}$ was well made with chalcopyrite structure at substrate temperature of 70 $^{\circ}C$, annealing temperature of 25$0^{\circ}C$, annealing time of 60 min. The CuInS$_2$ thin film had the greatest grain size of 1.2 ${\mu}{\textrm}{m}$ and Cu/In composition ratio of 1.03. Lattice constant of a and c of that CuInS$_2$ thin film was 5.60 $\AA$ and 11.12 $\AA$ respectively. Single phase CuInS$_2$ thin films were accepted from Cu/In composition ratio of 0.84 to 1.3. P-type CuInS$_2$ thin films were appeared at over Cu/In composition ratio of 0.99. Under Cu/In composition ratio of 0.96, conduction types of CuInS$_2$ thin films were n-type. Also, fundamental absorption wavelength, the absorption coefficient and optical energy band gap of p-type CuInS$_2$ thin film with Cu/In composition ratio of 1.3 was 837 nm, 3.0x10 $^4$ $cm^{-1}$ / and 1.48 eV respectively. When CuAn composition ratio was 0.84, fundamental absorption wavelength, the absorption coefficient and optical energy band gap of n-type CuInS$_2$ thin film was 821 nm, 6.0x10$^4$ $cm^{-1}$ / and 1.51 eV respectively.

  • PDF

Perfusion-Weighted MRI Parameters for Prediction of Early Progressive Infarction in Middle Cerebral Artery Occlusion

  • Kim, Hoon;Kim, Yerim;Kim, Young Woo;Kim, Seong Rim;Yang, Seung Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.4
    • /
    • pp.346-351
    • /
    • 2016
  • Objective : Early progressive infarction (EPI) is frequently observed and related to poor functional outcome in patients with middle cerebral artery (MCA) infarction caused by MCA occlusion. We evaluated the perfusion parameters of magnetic resonance imaging (MRI) as a predictor of EPI. Methods : We retrospectively analyzed patients with acute MCA territory infarction caused by MCA occlusion. EPI was defined as a National Institutes of Health Stroke Scale increment ${\geq}2$ points during 24 hours despite receiving standard treatment. Regional parameter ratios, such as cerebral blood flow and volume (rCBV) ratio (ipsilateral value/contralateral value) on perfusion MRI were analyzed to investigate the association with EPI. Results : Sixty-four patients were enrolled in total. EPI was present in 18 (28%) subjects and all EPI occurred within 3 days after hospitalization. Diabetes mellitus, rCBV ratio and regional time to peak (rTTP) ratio showed statically significant differences in both groups. Multi-variate analysis indicated that history of diabetes mellitus [odds ratio (OR), 6.13; 95% confidence interval (CI), 1.55-24.24] and a low rCBV ratio (rCBV, <0.85; OR, 6.57; 95% CI, 1.4-30.27) was significantly correlated with EPI. Conclusion : The incidence of EPI is considerable in patients with acute MCA territory infarction caused by MCA occlusion. We suggest that rCBV ratio is a useful neuro-imaging parameter to predict EPI.

Prediction of Poisson's ratio degradation in hygrothermal aged and cracked [θm/90n]s composite laminates

  • Khodjet-Kesb, M.;Adda bedia, E.A.;Benkhedda, A.;Boukert, B.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.57-72
    • /
    • 2016
  • The Poisson ratio reduction of symmetric hygrothermal aged $[{\theta}_m/90_n]_s$ composite laminates containing a transverse cracking in mid-layer is predicted by using a modified shear-lag model. Good agreement is obtained by comparing the prediction models and experimental data published by Joffe et al. (2001). The material properties of the composite are affected by the variation of temperature and transient moisture concentration distribution in desorption case, and are based on a micro-mechanical model of laminates. The transient and non-uniform moisture concentration distribution give rise to the transient Poisson ratio reduction. The obtained results represent well the dependence of the Poisson ratio degradation on the cracks density, fibre orientation angle of the outer layers and transient environmental conditions. Through the presented study, we hope to contribute to the understanding of the hygrothermal behaviour of cracked composite laminate.

Analysis on Creep of Concrete under Multiaxial Stresses Using Microplane Model (미세평면 모델을 적용한 다축응력 상태의 콘크리트 크리프 분석)

  • Kwon Seung-Hee;Kim Yun-Yong;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.195-204
    • /
    • 2004
  • Poisson's ratio due to multiaxial creep of concrete reported by existing experimental works was controversial. Poisson's ratio calculated from measured strain is very sensitive to small experimental error. This sensitivity make it difficult to find out whether the Poisson's ratio varies with time or remain constant, and whether the Poisson's ratio has different value with stress states or not. A new approach method is needed to resolve the discrepancy and obtain reliable results. This paper presents analytical study on multiaxial creep test results. Microplane model as a new approach method is applied to optimally fitting the test data extracted from experimental studies on multiaxial creep of concrete. Double-power law is used as a model to present volumetric and deviatoric creep evolutions on a microplane. Six parameters representing the volumetric and deviatoric compliance functions are determined from regression analysis and the optimum fits accurately describe the test data. Poisson's ratio is calculated from the optimum fits and its value varies with time. Regression analysis is also performed assuming that Poisson's ratio remains constant with time. Four parameters are determined for this condition, and the error between the optimum fits and the test data is slightly larger than that for six parameter regression results. The constant Poisson's ratio with time is obtained from four parameter analysis results and the constant value can be used in practice without serious error.

HARDWARE IN THE LOOP SIMULATION OF HYBRID VEHICLE FOR OPTIMAL ENGINE OPERATION BY CVT RATIO CONTROL

  • Yeo, H.;Song, C.H.;Kim, C.S.;Kim, H.S.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.201-208
    • /
    • 2004
  • Response characteristics of the CVT system for a parallel hybrid electric vehicle (HEV) are investigated. From the experiment, CVT ratio control algorithm for the optimal engine operation is obtained. To investigate the effect of the CVT system dynamic characteristics on the HEV performance, a hardware in the loop simulation (HILS) is performed. In the HILS, hardwares of the CVT belt-pulley and hydraulic control valves are used. It is found that the engine performance by the open loop CVT ratio control shows some deviation from the OOL in spite of the RCVs open loop control ability. To improve the engine performance, a closed loop control of the CVT ratio is proposed with variable control gains depending on the shift direction and the CVT speed ratio range by considering the nonlinear characteristics of the RCV and CVT belt-pulley dynamics. The HILS results show that the engine performance is improved by the closed loop control showing the operation trajectory close to the OOL.

Study on the Heat Transfer into by Space by the Aspect Ratio of Solar Concentration Absorber. (태양열 집광 흡수기내의 종횡비가 공간내의 열전달에 미치는 영향)

  • Lee, Y.H.;Lee, J.S.;Bae, K.Y.;Jeong, H.M.;Chung, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.199-204
    • /
    • 2001
  • This paper showed the study on the heat transfer into space by the aspect ratio of solar concentration absorber, and the purpose of this study is to obtain the optimum aspect ratio and tilt angle. The boundary conditions of a numerical model were assumed as follows : (1) The heat source is located at the center of absorber. (2) The bottom was is opened and adiabatic. (3) The top, right and left walls are cooled wall. The parameters for the study are the tilt angles and the aspect ratio. The velocity vectors and isotherms were dense at wall side and the heat source. The mean Nusselt number had a maximum value at Ar=1:1 and $\theta=0^{\circ}$ and showed a low value as the tilt angles were increased.

  • PDF

Heat Transfer Charaeteristic of Solar Concentration Absorber by the Aspect Ratio (종횡비에 따른 태양열 집광흡수기의 열전달특성)

  • Lee, Y.H.;Yi, C.S.;Bae, K.Y.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.43-49
    • /
    • 2002
  • This paper showed the study on the heat transfer into space by the aspect ratio of solar concentration absorber, and the purpose of this study was to obtain the optimum aspect ratio and tilt angle. The boundary conditions of a numerical model are assumed as follows : (1) The heat source is located at the center of absorber. (2) The bottom wall is opened and adiabatic. (3) The top, right and left walls are cooled wall. The parameters for the study are the tilt angles and the aspect ratio. The velocity vectors and isotherms were dense at wall side and the heat source. The mean Nusselt number had a maximum value at Ar=1:1 and ${\theta}=0^{\circ}$ and showed a low value as the tilt angles were increased.

  • PDF