• Title/Summary/Keyword: A/J Mice

Search Result 679, Processing Time 0.025 seconds

Production of Hepatotoxin by the Cyanobacterium Scytonema sp. Strain BT 23

  • Ashok, Kumar;Singh, D.P.;Tyagi, M.B.;Kumar, Arvind;Prasuna, E.G.;Thakur, J.K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.375-380
    • /
    • 2000
  • The preliminary screening of several cyanobacteria, using mice bioassay, reveale the production of a hepatotoxin by the cyanobacterium Scytonema sp. strain BT 23 isolated from soil. An intraperitoneal injection of the crude toxin (LD50 56 mg/kg body wt) from this strain caused the death of the mice within 40 min, and the anmals showed slinical signs of mice within 40 min, and the animals showed clinical signs of hepatotoxicity. The toxin was purified and partially characterized. The active fraction appears to be nonpolar in nature and shows absorption peaks at 240 and 285 nm. The purified toxin had an LD50 of TEX>$100<\mu\textrm{g}/kg$ body wt and the test mice died within 40 min of toxin administration. The toxin-treated mice showed a 1.65-fold increase in liver weight at 40 min and the liver color chnged to dark red due to intrahepatic hemorrhage and pooling of blood. Furthermore, the administration of the toxin to test mice induced a 2.58, 2.63, and 2.30-fold increse in the activity of the serum enzymes alanine aminotransferase, lactate dehydrogenase, and alkaline phosphatase, respectively. Further experiments with the 14C-labeled toxin revealed a maximum accumulation of the toxin in the liver. The clinical symptoms in the mice were similar to those produced by microcystin-L.R. These results suggest that hepatotoxins may also be produced in non bloom-forming planktonic cyanobacteria.

  • PDF

Modifying Effect of Indole-3-carbinol on Azoxymethane-induced Colon Carcinogenesis

  • Kang, Jin-Seok
    • Biomedical Science Letters
    • /
    • v.16 no.4
    • /
    • pp.381-385
    • /
    • 2010
  • Indole-3-carbinol (I3C), one of naturally occurring main components in cauliflower vegetables, is supposed to have a chemopreventive potential in experimental animals and humans. This study was investigated to examine chemopreventive effect of I3C on colon carcinogenesis induced by azoxymethane (AOM) using C57BL/6J mice. Mice were divided into three groups (10 or 9 mice/group). All mice were subcutaneously injected with AOM (5 mg/kg body weight, four times at weekly interval). After AOM treatment, animals of group 1 were fed by AIN-76A pellets as a basal diet. Animals of groups 2 and 3 were given I3C containing diets (100 and 300 ppm in diets, respectively) for 6 weeks until sacrifice. All mice were sacrificed at week 10 and the aberrant crypt foci (ACF) of the colonic mucosa were assessed after staining with methylene blue. Total numbers of ACF/colon in group 2 ($10.1{\pm}5.1$) or group 3 ($10.6{\pm}5.3$) were decreased compared to the values of group 1 ($14.4{\pm}10.2$). Among numbers of ACF formation, 5, 7, 8 and 10 ACF in group 2 and 3 were greatly different those of group 1. Total numbers of aberrant crypts (AC)/colon of group 2 ($20.1{\pm}10.1$) or group 3 ($22.0{\pm}10.9$) were decreased compared to the value of group 1 ($33.7{\pm}24.7$). Taken together, it suggests that I3C treatment may retard mouse colon carcinogenesis even after administration of AOM.

Gynura procumbens extract improves insulin sensitivity and suppresses hepatic gluconeogenesis in C57BL/KsJ-db/db mice

  • Choi, Sung-In;Lee, Hyun-Ah;Han, Ji-Sook
    • Nutrition Research and Practice
    • /
    • v.10 no.5
    • /
    • pp.507-515
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: This study was designed to investigate whether Gynura procumbens extract (GPE) can improve insulin sensitivity and suppress hepatic glucose production in an animal model of type 2 diabetes. MATERIALS/METHODS: C57BL/Ksj-db/db mice were divided into 3 groups, a regular diet (control), GPE, and rosiglitazone groups (0.005 g/100 g diet) and fed for 6 weeks. RESULTS: Mice supplemented with GPE showed significantly lower blood levels of glucose and glycosylated hemoglobin than diabetic control mice. Glucose and insulin tolerance test also showed the positive effect of GPE on increasing insulin sensitivity. The homeostatic index of insulin resistance was significantly lower in mice supplemented with GPE than in the diabetic control mice. In the skeletal muscle, the expression of phosphorylated AMP-activated protein kinase, pAkt substrate of 160 kDa, and PM-glucose transporter type 4 increased in mice supplemented with GPE when compared to that of the diabetic control mice. GPE also decreased the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase in the liver. CONCLUSIONS: These findings demonstrate that GPE might improve insulin sensitivity and inhibit gluconeogenesis in the liver.

Anti-diabetic Activities of Kocat-D1 in 3T3-L1 Adipocytes and C57BL/KsJ-db/db Mice (3T3-L1 Adipocyte와 C57BL/KsJ-db/db Mice에서 KOCAT-D1의 항당뇨 활성)

  • Yang, Ji-Hee;Won, Hye-Jin;Park, Ho-Young;Nam, Mi-Hyun;Lee, Hyun-Sun;Lee, Joong-Ku;Kim, Jong-Tak;Lee, Kwang-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.5
    • /
    • pp.692-698
    • /
    • 2010
  • This study investigated anti-diabetic activity of Kocat-D1, which is a currently used traditional medicine for treatment of diabetes in Shandong, China. Insulin sensitizing activity was observed in a cell-based glucose uptake assay using 3T3-L1 adipocytes. The treatment of 0.2 mg/mL of hot water extract of Kocat-D1 with 0.2 nM insulin was associated with a significant increasing in glucose uptake ($165.0{\pm}0.7%$) over the treatment of 0.2 nM insulin. C57BL/KsJ-db/db mice (8 weeks of age) were separated into 3 groups: normal control (control, db/+ mice untreated), diabetic control (DM control, db/db mice untreated), Kocat-D1 (db/db mice treated with Kocat-D1 extract 350 mg/kg/day). After 16 weeks of treatment, body weight and total diet intake of Kocat-D1 group were significantly lower than DM control groups. Blood glucose levels of the Kocat-D1 group ($14.7{\pm}1.4\;mmol/L$) were significantly lower compared to the DM control group ($27.1{\pm}0.2\;mmol/L$). Furthermore, insulin level was significantly increased in the Kocat-D1 group ($0.17{\pm}0.02\;ng/mL$) compared with the DM control group ($0.05{\pm}0.02\;ng/mL$). The glomeruli in kidney was stained using periodic acid-shiff base (PAS) for confirming collagen accumulation. The glomeruli in kidney of Kocat-D1 group had significantly reduced PAS-positive compared with that of DM control.

Effects of Inonotus Obliqua Extract on Blood Glucose Levels in Genetically Diabetic Mice (차가버섯 추출물이 당뇨생쥐 $(C57BL/KsJ^-m^{+/+}Lepr^{db})$의 혈당수준에 미치는 영향)

  • Hong, Hee-Ok
    • Journal of Nutrition and Health
    • /
    • v.40 no.7
    • /
    • pp.601-605
    • /
    • 2007
  • This study investigated the therapeutic effects of Inonotus obliqua extract on blood glucose, insulin, and other biochemical parameters in genetically diabetic mice $(C57BL/KsJ^-m^{+/+}Lepr^{db})$. The mice were divided into four groups-control, Chaga 1 (dose of 0.09 mg/kg of body weight), Chaga 5 (5 times of Chaga 1), and Chaga 10 (10 times of Chaga 1) - according to supplemented dose. Inonotus obliqua extract was orally administered to the animals for 6 weeks. The body and organ (liver and kidney) weights were not different among groups. Fasting blood glucose level was significantly lower in the Chaga 5 group compared with the control (p < 0.05). Hemoglobin A1c content was significantly lower in the Chaga 5 group compared with either the control and Chaga 1 group (p < 0.05). There was no significant difference in serum insulin level among groups. The glucose-6-phosphatase activity in liver was significantly the lowest in Chaga 10 group and was significantly lower in Chaga 5 group as compared with those of control and Chaga 1 groups. Therefore, the results of this study demonstrate that Inonotus obliqua extract alleviates many of the symptoms of diabetes in genetically obese mice and may offer a possibility as a therapeutic supplement for the normalization of blood glucose levels in human with hyperglycemia and have beneficial effects in patients with non-insulin-dependent diabetes mellitus.

Anti-Obese Activity of HPJ Extract on High Fat Diet-Induced Obese Mice (고지방 식이로 유도된 비만 쥐에서 HPJ 추출물의 항비만 효과)

  • Yuan, Hai-Dan;Quan, Hai-Yan;Zhang, Ya;Kim, Sung-Jib;Shin, Dae-Hee;Lim, Bang-Ho;Chung, Sung-Hyun
    • YAKHAK HOEJI
    • /
    • v.53 no.5
    • /
    • pp.286-292
    • /
    • 2009
  • In this study, we investigated the anti-obese activity of HPJ extract in C57BL/6J mice. The C57BL/6J mice were randomly divided into five groups: normal control group (Con), high fat diet control group (HFD), treatment groups with HPJ at 125 mg/kg (HPJ125), 250 mg/kg (HPJ250), or 500 mg/kg (HPJ500). To induce an obesity, mice were fed by a high fat diet for 6 weeks, and mice were administered with HPJ extract once a day for 8 weeks. At the end of treatment, we examined the effect of HPJ extract on body weight, plasma lipid, and lipogenic enzymes. HPJ extract was found to lower whole body and epididymal adipose tissue weights and lowered plasma levels of glucose, insulin, triglyceride (TG), total cholesterol (TC), non-esterified fatty acid (NEFA) and leptin, compared to those in HFD group. Histological analyses of the liver and fat tissues of mice treated with HPJ extract revealed significantly decreased number of lipid droplets and decreased size of adipocytes compared to the HFD group. In addition, HPJ extract preserved the morphological integrity of pancreatic islets. To elucidate an action mechanism of HPJ extract, Western blot and RT-PCR were performed using epididymal adipose tissues. HPJ extract up-regulated the levels of phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and its substrate, acetyl-CoA carboxylasse (ACC). HPJ extract also attenuated lipogenic gene expressions of sterol regulatory element-binding protein $1{\alpha}$ (SREBP$1{\alpha}$), fatty acid synthase (FAS), sterol-CoA desaturase 1 (SCD1) and glycerol-3-phosphate acyltransferase (GPAT) in dose-dependent manners. In contrast, expressions of lipolytic genes such as peroxisome proliferator-activated receptor-$\alpha$ (PPAR-${\alpha}$) and CD36, and fatty acid $\beta$-oxidation gene, carnitine palmitoyltransferase-1 (CPT-1) were increased. These results suggest that HPJ extract ameliorates obesity through inhibiting synthesis of lipogenic enzymes as well as stimulating fatty acid oxidation resulting from activation of AMPK, and HPJ extract could be developed as a potential therapeutic agent for obese patients.

The non-saponin fraction of Korean Red Ginseng (KGC05P0) decreases glucose uptake and transport in vitro and modulates glucose production via down-regulation of the PI3K/AKT pathway in vivo

  • Park, Soo-Jeung;Lee, Dasom;Kim, Dakyung;Lee, Minhee;In, Gyo;Han, Sung-Tai;Kim, Sung Won;Lee, Mi-Hyang;Kim, Ok-Kyung;Lee, Jeongmin
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.362-372
    • /
    • 2020
  • Background: The non-saponin fraction of Korean Red Ginseng has been reported to have many biological activities. However, the effect of this fraction on anti-diabetic activity has not been elucidated in detail. In this study, we investigated the effects of KGC05P0, a non-saponin fraction of Korean Red Ginseng, on anti-diabetic activity in vitro and in vivo. Methods: We measured the inhibition of commercially obtained α-glucosidase and α-amylase activities in vitro and measured the glucose uptake and transport rate in Caco-2 cells. C57BL/6J mice and C57BLKS/Jdb/db (diabetic) mice were fed diets with or without KGC05P0 for eight weeks. To perform the experiments, the groups were divided as follows: normal control (C57BL/6J mice), db/db control (C57BLKS/Jdb/db mice), positive control (inulin 400 mg/kg b.w.), low (KGC05P0 100 mg/kg b.w.), medium (KGC05P0 200 mg/kg b.w.), and high (KGC05P0 400 mg/kg b.w.). Results: KGC05P0 inhibited α-glucosidase and α-amylase activities in vitro, and decreased glucose uptake and transport rate in Caco-2 cells. In addition, KGC05P0 regulated fasting glucose level, glucose tolerance, insulin, HbA1c, carbonyl contents, and proinflammatory cytokines in blood from diabetic mice and significantly reduced urinary glucose excretion levels. Moreover, we found that KGC05P0 regulated glucose production by down-regulation of the PI3K/AKT pathway, which inhibited gluconeogenesis. Conclusion: Our study thereby demonstrated that KGC05P0 exerted anti-diabetic effects through inhibition of glucose absorption and the PI3K/AKT pathway in in vitro and in vivo models of diabetes. Our results suggest that KGC05P0 could be developed as a complementary food to help prevent T2DM and its complications.

Bitam-S Improves the Non-alcoholic Fatty Liver Disease in C57BL/6J ob/ob Mice (Ob/ob Mouse에서 비탐-에스의 비 알코올성 지방간 개선 활성)

  • Han, Eun-Jung;Kim, Ae-Kyung;Chung, Sung-Hyun
    • YAKHAK HOEJI
    • /
    • v.49 no.4
    • /
    • pp.306-311
    • /
    • 2005
  • Semisulospira libertine (SL) has been used as a folk medicine for quenching a thirst, hepatic fever and inflammation in oriental countries. Although SL has been anecdotally ascertained to ameliorate the hepatic diseases, there are no sufficient experimental evidences. The purpose of this study was to examine the effect of Bitam-S, in which SL is a main component, on non-alcoholic fatty liver disease manifested in C57BL/6J ob/ob mice. At 6 week old, the ob/ob mice were randomly divided into four groups; control and three treatment groups. The control mice was to receive a regular diet, and the treatment groups were fed a regular diet with either 250mg/kg, 500mg/kg of Bitam-S (BS250 and BS500) or 300mg/kg of metformin (MT300) for a 8-week period. Bitam-S exerted beneficial effects on lipid homeostasis in ob/ob mice that are not necessarily due to its ability to decrease food intake but its specific effects on hepatic lipogenesis related genes (SREBP1a, FAS and SCD-1). The combined effects of Bitam-S to reduce body weight and lipogenic gene expressions, and reduce the deposition of triglyceride in the liver are indicative of a marked improvement in obesity-related non-alcoholic fatty liver disease. Taken together, Bitam-S has potential as a treatment agent for non-alcoholic fatty liver disease and deserves clinical trial in the near future.

Troglitazone Regulates white Adipose Tissue Metabolism by Activating Genes Involved in Fatty Acid ${\beta}$-Oxidation in High Fat Diet-fed C57BL/6J Mice

  • Jeong, Sun-Hyo;Yoon, Mi-Chung
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.319-327
    • /
    • 2006
  • This study aimed to determine whether troglitazone stimulates genes related to fatty acid ${\beta}$-oxidation, leading to modulation of white adipose tissue (WAT) metabolism in high fat diet-fed mice. Female C57BL/6J mice were randomly divided into two groups (n=10/group). After they received either a high fat diet or the same high fat diet supplemented with troglitazone for 4 weeks, the effects of troglitazone on gene expression and physiology of WAT were measured using Northern, histological and serological analyses. Administration of troglitazone induced the expression of genes involved in mitochondrial and peroxisomal fatty acid ${\beta}$-oxidation in mesenteric WAT. Troglitazone also significantly increased uncoupling protein 2 mRNA levels. The changes in WAT gene expression were accompanied by reductions in circulating levels of free fatty acids and triglycerides as well as glucose and insulin. Histological studies showed that troglitazone treatment decreased the average size of adipocytes in mesenteric WAT. These results suggest that troglitazone-stimulated WAT expression of genes associated with fatty acid ${\beta}$-oxidation regulates WAT metabolism of high fat diet-fed mice, contributing to improvement of insulin sensitivity.

  • PDF