• 제목/요약/키워드: A* Path Planning

검색결과 1,070건 처리시간 0.024초

Limit-cycle 항법과 모서리 검출을 기반으로 하는 UGV를 위한 계획 경로 알고리즘 (Path Planning Algorithm for UGVs Based on the Edge Detecting and Limit-cycle Navigation Method)

  • 임윤원;정진수;안진웅;김동한
    • 제어로봇시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.471-478
    • /
    • 2011
  • This UGV (Unmanned Ground Vehicle) is not only widely used in various practical applications but is also currently being researched in many disciplines. In particular, obstacle avoidance is considered one of the most important technologies in the navigation of an unmanned vehicle. In this paper, we introduce a simple algorithm for path planning in order to reach a destination while avoiding a polygonal-shaped static obstacle. To effectively avoid such an obstacle, a path planned near the obstacle is much shorter than a path planned far from the obstacle, on the condition that both paths guarantee that the robot will not collide with the obstacle. So, to generate a path near the obstacle, we have developed an algorithm that combines an edge detection method and a limit-cycle navigation method. The edge detection method, based on Hough Transform and IR sensors, finds an obstacle's edge, and the limit-cycle navigation method generates a path that is smooth enough to reach a detected obstacle's edge. And we proposed novel algorithm to solve local minima using the virtual wall in the local vision. Finally, we verify performances of the proposed algorithm through simulations and experiments.

입자 군집 최적화와 개선된 Dijkstra 알고리즘을 이용한 경로 계획 기법 (Path Planning Method Using the the Particle Swarm Optimization and the Improved Dijkstra Algorithm)

  • 강환일;이병희;장우석
    • 한국지능시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.212-215
    • /
    • 2008
  • 본 논문에서 개선된 Dijkstra 알고리즘과 입자 군집 최적화를 이용한 최적 경로 계획 알고리즘을 제안한다. 최적의 경로를 구하기 위해 우선 이동 로봇 공간에서 MAKLINK를 작성하고 MAKLINK와 관련한 그래프를 얻는다. 여기서 MAKLINK는 장애물의 꼭지점을 연결하면서 볼록집합이 만들어지도록 하는 모서리의 집합을 의미한다. 얻은 그래프에서 출발점과 도착점을 포함하여 Dijkstra 알고리즘을 이용하여 최소 비용 최적 경로를 얻고 이 최적의 경로에서 개선된 Dijkstra경로를 얻는다. 마지막으로 개선된 Dijkstra경로에서 입자 군집 최적화를 적용하여 최적의 경로를 얻는다. 제안된 방법이 논문[1]에 나온 결과보다 더 좋은 성능을 갖는다는 것을 실험을 통해 입증한다.

무인기의 SEAD 임무 수행을 위한 임무 경로 생성 및 효과도 산출 기법 연구 (A Study on the Techniques of Path Planning and Measure of Effectiveness for the SEAD Mission of an UAV)

  • 우지원;박상윤;남경래;고정환;김재경
    • 한국항행학회논문지
    • /
    • 제26권5호
    • /
    • pp.304-311
    • /
    • 2022
  • 적 방공망 제압 임무는 현대전에서 전략적으로 중요한 임무이지만 적 방공자산에 직접적으로 노출될 위험이 높아 위험 부담이 크다. 따라서, 무인기를 활용하여 임무를 수행하는 것이 하나의 대안으로 제시된다. 본 논문에서는 무인기의 적 방공망 제압 임무 수행을 위한 경로 생성 기법과 생성된 경로에 대한 임무 효과도 산출 기법을 제안한다. 먼저, RRT 기반의 경로 탐색 알고리즘을 기반으로 적의 단거리 대공 위협을 고려할 수 있는 저공 침투/이탈 비행 경로 기법을 다룬다. 또한, 최단의 경로이면서 동시에 적의 단거리 대공 위협을 최대한 회피하는 표적 타격 경로를 생성하기 위해 Dubins 경로 기반의 타격 경로 생성 기법이 사용된다. 이를 통해 생성된 침투/타격/이탈 경로를 순서에 따라 통합한다. 통합된 경로를 기반으로 연료소모량, 무인기의 생존 확률, 임무 수행 소요 시간, 그리고 표적 파괴 확률로 이루어진 임무 효과도를 산출한다. 마지막으로, 제안된 적 방공망 제압 임무 경로 생성 기법 및 임무 효과도 산출 기법을 가상 시나리오를 통해 검증한다.

로봇의 최적 시간 제어에 관한 연구

  • 정년수;한창수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 추계학술대회 논문집
    • /
    • pp.301-305
    • /
    • 2001
  • Conventionally, robot control algorithms are divided into two stages, namely, path or trajectory planning and path tracking(or path control). This division has been adopted mainly as a means of alleviating difficulties in dealing with complex, complex, coupled manipulator dynamics. The minimum-time manipulator control problem is solved for the case when the path is specified and the actuator torque limitations are known. In path planning, DP is applied to applied to find the shortest path form initial position to final position with the assumptions that there is no obstacle and that each path is straight line. In path control, the phase plane technique is applied to the minimum-time control with the assumptions that the bound on each actuator torque is a function of joint position and velocity or constant. This algorithm can be used for any manipulator that has rigid link, known dynamics equations of motion, and joint angles that can be determined at a given position on the path.

벽추종 경로계획 기반의 효과적인 방 찾기 탐사 (Efficient Exploration for Room Finding Using Wall-Following based Path Planning)

  • 박중태;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제15권12호
    • /
    • pp.1232-1239
    • /
    • 2009
  • This paper proposes an exploration strategy to efficiently find a specific place in large unknown environments with wall-following based path planning. Many exploration methods proposed so far showed good performance but they focused only on efficient planning for modeling unknown environments. Therefore, to successfully accomplish the room finding task, two additional requirements should be considered. First, suitable path-planning is needed to recognize the room number. Most conventional exploration schemes used the gradient method to extract the optimal path. In these schemes, the paths are extracted in the middle of the free space which is usually far from the wall. If the robot follows such a path, it is not likely to recognize the room number written on the wall because room numbers are usually too small to be recognized by camera image from a distance. Second, the behavior which re-explores the explored area is needed. Even though the robot completes exploration, it is possible that some rooms are not registered in the constructed map for some reasons such as poor recognition performance, occlusion by a human and so on. With this scheme, the robot does not have to visit and model the whole environment. This proposed method is very simple but it guarantees that the robot can find a specific room in most cases. The proposed exploration strategy was verified by various experiments.

무인차량의 강인한 경유점 주행을 위한 베지어 곡선 기반 경로 계획 (Bezier Curve-Based Path Planning for Robust Waypoint Navigation of Unmanned Ground Vehicle)

  • 이상훈;전창묵;권태범;강성철
    • 제어로봇시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.429-435
    • /
    • 2011
  • This paper presents a sensor fusion-based estimation of heading and a Bezier curve-based motion planning for unmanned ground vehicle. For the vehicle to drive itself autonomously and safely, it should estimate its pose with sufficient accuracy in reasonable processing time. The vehicle should also have a path planning algorithm that enables to adapt to various situations on the road, especially at intersections. First, we address a sensor fusion-based estimation of the heading of the vehicle. Based on extended Kalman filter, the algorithm estimates the heading using the GPS, IMU, and wheel encoders considering the reliability of each sensor measurement. Then, we propose a Bezier curve-based path planner that creates several number of path candidates which are described as Bezier curves with adaptive control points, and selects the best path among them that has the maximum probability of passing through waypoints or arriving at target points. Experiments under various outdoor conditions including at intersections, verify the reliability of our algorithm.

Path Planning based on Geographical Features Information that considers Moving Possibility of Outdoor Autonomous Mobile Robot

  • Ibrahim, Zunaidi;Kato, Norihiko;Nomura, Yoshihiko;Matsui, Hirokazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.256-261
    • /
    • 2005
  • In this research, we propose a path-planning algorithm for an autonomous mobile robot using geographical information, under the condition that the robot moves in unknown environment. All image inputted by camera at every sampling time are analyzed and geographical elements are recognized, and the geographical information is embedded in environmental map. The geographical information was transformed into 1-dimensional evaluation value that expressed the difficulty of movement for the robot. The robot goes toward the goal searching for path that minimizes the evaluation value at every sampling time. Then, the path is updated by integrating the exploited information and the prediction on unexploited environment. We used a sensor fusion method for improving the mobile robot dead reckoning accuracy. The experiment results that confirm the effectiveness of the proposed algorithm on the robot's reaching the goal successfully using geographical information are presented.

  • PDF

유전자 알고리즘을 이용한 무인잠수정의 와조류장에서의 전역경로계획 (Global Path Planning for an Autonomous Underwater Vehicle in a Vortical Current Field by Using Genetic Algorithm)

  • 이기영;김수범;송찬희
    • 한국군사과학기술학회지
    • /
    • 제16권4호
    • /
    • pp.473-480
    • /
    • 2013
  • The purpose of this paper is to demonstrate that the genetic algorithm can be useful for the global path planning when the obstacles and current field data are given. In particular, the possibilities for a novel type small AUV mission deployment in tidal regions, which experience vortical currents, were examined. Experimental simulations show feasibility and effective in generate the global path regardless of current and obstacles. By choosing an appropriate path in space, an AUV may both bypass adverse currents which are too fast to be overcome by the vehicle's motor and also exploit favorable currents to achieve far greater speeds than motors could otherwise provide, while substantially saving energy.

격자 지도의 골격화를 이용한 Informed RRT* 기반 경로 계획 기법의 개선 (Improved Path Planning Algorithm based on Informed RRT* using Gridmap Skeletonization)

  • 박영훈;유혜정
    • 로봇학회논문지
    • /
    • 제13권2호
    • /
    • pp.142-149
    • /
    • 2018
  • $RRT^*$ (Rapidly exploring Random $Tree^*$) based algorithms are widely used for path planning. Informed $RRT^*$ uses $RRT^*$ for generating an initial path and optimizes the path by limiting sampling regions to the area around the initial path. $RRT^*$ algorithms have several limitations such as slow convergence speed, large memory requirements, and difficulties in finding paths when narrow aisles or doors exist. In this paper, we propose an algorithm to deal with these problems. The proposed algorithm applies the image skeletonization to the gridmap image for generating an initial path. Because this initial path is close to the optimal cost path even in the complex environments, the cost can converge to the optimum more quickly in the proposed algorithm than in the conventional Informed $RRT^*$. Also, we can reduce the number of nodes and memory requirement. The performance of the proposed algorithm is verified by comparison with the conventional Informed $RRT^*$ and Informed $RRT^*$ using initial path generated by $A^*$.