A behavior tree is to express the behavior of artificial intelligence. The behavior tree has a characteristic that is easy to change state transitions than FSM(Finite State Machine), see the progress of the action. For these reasons, the behavior tree is widely used in more than FSM. This paper is to analyze the advantages and disadvantages on behavior trees of game engines, proposes the improved behavior tree based on analyzed them. To achieve this, in this paper, first, examines the role of node and the behavior tree structure of the unity engine, unreal engine. Second, discusses the advantages and disadvantages based on it. Third, proposes the behavior tree to improve the disadvantages of behavior tree of unity engine and unreal engine, depth of behavior tree and search time required to select the execution node. This paper can help developers using the tree to develop the game.
In this paper, we propose a NPC decision making model based on Prospect Theory which tries to model real-life choice, rather than optimal decision. For this purpose, we analyse the problems of reference point setting, diminishing sensitivity and loss aversion which are known as limitations of the utility theory and then apply these characteristics into the decision making in game. Dynamic Terrain Analysis is utilized to evaluate the proposed model and experimental result shows the method have effects on inducing diverse personality and emergent behavior on NPC.
This paper shows the application of P-N Learning [4] method in the soccer ball detection and improvement for increasing the speed of processing. In the P-N learning, the learning process is guided by positive (P) and negative (N) constraints which restrict the labeling of the unlabeled data, identify examples that have been classified in contradiction with structural constraints and augment the training set with the corrected samples in an iterative process. But for the long-view in the soccer game, P-N learning will produce so many ferns that more time is spent than other methods. We propose that color histogram of each frame is constructed to delete the unnecessary details in order to decreasing the number of feature points. We use the mask to eliminate the gallery region and Line Hough Transform to remove the line and adjust the P-N learning's parameters to optimize accurate and speed.
International Journal of Advanced Culture Technology
/
v.11
no.1
/
pp.165-170
/
2023
This study focuses on the development of intelligent combat robot systems for future warfare. The research is structured as follows: First, the introduction presents the rationale for researching intelligent combat robots and their potential to become game changers in future warfare. Second, in the context of the intelligent robot paradigm, this study proposes the need for military organizations to innovate their combat concepts and weapon systems through the effective utilization of Artificial Intelligence, Cognitive, Biometric, and Mechanical technologies. This forms the theoretical background of the study. Third, the analysis of intelligent robot systems considers five examples: humanoid robots, jumping robots, wheeled and quadrupedal pack robots, and tank robots. Finally, the discussion and conclusion propose that intelligent combat robots should be selected as game changers in military organizations for future warfare, and suggest further research in this area.
Artificial intelligence (AI), big data, and ubiquitous robotic companions -the three most notable technologies of the 4th Industrial Revolution-are receiving renewed attention each day. Technologies that can be experienced in daily life, such as autonomous navigation, real-time translators, and voice recognition services, are already being commercialized in the field of information technology. In the biosciences field in Korea, such technologies have become known to the local public with the introduction of the AI doctor Watson in large number of hospitals. Additionally, AlphaFold, a technology resembling the AI AlphaGo for the game Go, has surpassed the limit on protein folding predictions-the most challenging problems in the field of protein biology. This report discusses the significance of AI technology and big data on the bioscience field. The introduction of automated robots in this field is not just only for the purpose of convenience but a prerequisite for the real sense of AI and the consequent accumulation of basic scientific knowledge.
Purpose Recently, many researchers have paid much attention to the Artificial Intelligence fields of GVGP, PCG. The paper suggests that the improved MCTS algorithm to apply for the framework can generate better AI agent. Design/methodology/approach As noted, the MCTS generate magnificent performance without an advanced training and in turn, fit applying to the field of GVGP which does not need prior knowledge. The improved and modified MCTS shows that the survival rate is increased interestingly and the search can be done in a significant way. The study was done with 2 different sets. Findings The results showed that the 10 training set which was not given any prior knowledge and the other training set which played a role as validation set generated better performance than the existed MCTS algorithm. Besed upon the results, the further study was suggested.
International journal of advanced smart convergence
/
v.12
no.2
/
pp.90-95
/
2023
With the rapid development of deep learning and artificial intelligence, generative models have achieved remarkable success in the field of image generation. By combining the stable diffusion method with Web UI technology, a novel solution is provided for the application of AI painting generation. The application prospects of this technology are very broad and can be applied to multiple fields, such as digital art, concept design, game development, and more. Furthermore, the platform based on Web UI facilitates user operations, making the technology more easily applicable to practical scenarios. This paper introduces the basic principles of Stable Diffusion Web UI technology. This technique utilizes the stability of diffusion processes to improve the output quality of generative models. By gradually introducing noise during the generation process, the model can generate smoother and more coherent images. Additionally, the analysis of different model types and applications within Stable Diffusion Web UI provides creators with a more comprehensive understanding, offering valuable insights for fields such as artistic creation and design.
Commander and staffs on the battlefield are aware of the situation and, based on the results, they perform military activities through their military decisions. Recently, with the development of information technology, the demand for artificial intelligence to support military decisions has increased. It is essential to identify, collect, and pre-process the data set for reinforcement learning to utilize artificial intelligence. However, data on enemies lacking in terms of accuracy, timeliness, and abundance is not suitable for use as AI learning data, so a training model is needed to collect AI learning data. In this paper, a methodology for learning artificial intelligence was presented using the constructive wargame model exercise data. First, the role and scope of artificial intelligence to support the commander and staff in the military decision-making process were specified, and to train artificial intelligence according to the role, learning data was identified in the Chang-Jo 21 model exercise data and the learning results were simulated. The simulation data set was created as imaginary sample data, and the doctrine of ROK Army, which is restricted to disclosure, was utilized with US Army's doctrine that can be collected on the Internet.
This study is the research tendency(2016~2019) on the content and the intelligent information technology. After the IIT emerged as a social topic, related research increased, and interest in VR and AR was the highest. In games, more research has been done on VR and AR. In the case of big data technology, it was a tendency to pay attention to the study of movie contents. Many studies have attempted a technological approach to IIT. With regard to artificial intelligence technology, there were differences by technology and content area, mainly viewed from a legal and institutional perspective.
GuessWhat?! is a game in which two machine players, composed of questioner and answerer, ask and answer yes-no-N/A questions about the object hidden for the answerer in the image, and the questioner chooses the correct object. GuessWhat?! has received much attention in the field of deep learning and artificial intelligence as a testbed for cutting-edge research on the interplay of computer vision and dialogue systems. In this study, we discuss the objective function and characteristics of the GuessWhat?! game. In addition, we propose a simple solver for GuessWhat?! using a simple rule-based algorithm. Although a human needs four or five questions on average to solve this problem, the proposed method outperforms state-of-the-art deep learning methods using only two questions, and exceeds human performance using five questions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.