• Title/Summary/Keyword: 9.12 Earthquake

Search Result 75, Processing Time 0.029 seconds

Determination of critical excitation in seismic analysis of structures

  • Kamgar, Reza;Rahgozar, Reza
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.875-891
    • /
    • 2015
  • Earthquake can occur anywhere in the world and it is essential to design important members in special structures based on maximum possible forces that can be produced in them under severe earthquake. In addition, since the earthquake is an accidental phenomena and there are no similar earthquakes, therefore the possibility of strong earthquakes should be taken into account in earthquake-resistant design of important structures. Based on this viewpoint, finding the critical acceleration which maximizes internal forces is an essential factor in structural design. This paper proposes critical excitation method to compute the critical acceleration in design of important members in special structures. These critical accelerations are computed so that the columns' internal shear force at the base of the structure at each time step is maximized under constraints on ground motion. Among computed critical accelerations (of each time step), the one which produces maximum internal shear force is selected. A numerical example presents to show the efficiency of critical excitation method in determining the maximum internal shear force and base moment under variety of constraints. The results show that these method can be used to compute the resonant earthquake which have large enough effective duration of earthquake strong motion (between 12.86 sec to 13.38 sec) and produce the internal shear force and base moment for specific column greater than the same value for selected earthquakes in constructing the critical excitation (for different cases about 2.78 to 1.29 times the San Fernando earthquake). Therefore, a group of them can be utilized in developing the response spectrum for design of special structures.

Stochastic Self-similarity Analysis and Visualization of Earthquakes on the Korean Peninsula (한반도에서 발생한 지진의 통계적 자기 유사성 분석 및 시각화)

  • JaeMin Hwang;Jiyoung Lim;Hae-Duck J. Jeong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.493-504
    • /
    • 2023
  • The Republic of Korea is located far from the boundary of the earthquake plate, and the intra-plate earthquake occurring in these areas is generally small in size and less frequent than the interplate earthquake. Nevertheless, as a result of investigating and analyzing earthquakes that occurred on the Korean Peninsula between the past two years and 1904 and earthquakes that occurred after observing recent earthquakes on the Korean Peninsula, it was found that of a magnitude of 9. In this paper, the Korean Peninsula Historical Earthquake Record (2 years to 1904) published by the National Meteorological Research Institute is used to analyze the relationship between earthquakes on the Korean Peninsula and statistical self-similarity. In addition, the problem solved through this paper was the first to investigate the relationship between earthquake data occurring on the Korean Peninsula and statistical self-similarity. As a result of measuring the degree of self-similarity of earthquakes on the Korean Peninsula using three quantitative estimation methods, the self-similarity parameter H value (0.5 < H < 1) was found to be above 0.8 on average, indicating a high degree of self-similarity. And through graph visualization, it can be easily figured out in which region earthquakes occur most often, and it is expected that it can be used in the development of a prediction system that can predict damage in the event of an earthquake in the future and minimize damage to property and people, as well as in earthquake data analysis and modeling research. Based on the findings of this study, the self-similar process is expected to help understand the patterns and statistical characteristics of seismic activities, group and classify similar seismic events, and be used for prediction of seismic activities, seismic risk assessments, and seismic engineering.

A Study on the Suitability Impact Factors of a Comprehensive Park as an Emergency Shelter for Earthquakes (지진대피공간으로써의 공원녹지 적절성 평가지표 연구)

  • Cao, Lin-Sen;Kang, Tai-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.4
    • /
    • pp.62-70
    • /
    • 2017
  • Following the September $12^{th}$, 2016 earthquake in Gyeongju-city, the observation can be made that South Korea is not a non-earthquake country. Because of its particular characteristics, urban green spaces are good sites for protection during an earthquake but studies regarding the suitability of park green spaces as a form of earthquake shelter are few, making it difficult to highlight the function of park green spaces as emergency shelters. The purpose of this study is to identify indicators for suitability impact factors of comprehensive parks as emergency earthquake shelter zones. Using the Delphi method, three rounds of survey were implemented. According to the analysis results of Average value, CVR, Consultation and Convergence, ten candidate indicators were removed in the candidate group. Twenty-seven suitability impact factors of comprehensive parks were retained, including 8 indicators in the field of safety, 6 indicators in the field of accessibility, and 13 indicators in the field of service effectiveness.

Seismic Response of R/C Structures Subjected to Artificial Ground Motions Compatible with Design Spectrum (설계용 스펙트럼에 적합한 인공지진동을 입력한 철근콘크리트 구조물의 지진응답 특성의 고찰)

  • Jun, Dae-Han;Kang, Ho-Geun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • In seismic response analysis of building structures, the input ground accelerations have considerable effect on the nonlinear response characteristics of structures. The characteristics of soil and the locality of the site where those ground motions were recorded affect on the contents of earthquake waves. Therefore, it is difficult to select appropriate input ground motions for seismic response analysis. This study describes a generation of artificial earthquake wave compatible with seismic design spectrum, and also evaluates the seismic response values of multistory reinforced concrete structures by the simulated earthquake motions. The artificial earthquake wave are generated according to the previously recorded earthquake waves in past major earthquake events. The artificial wave have identical phase angles to the recorded earthquake wave, and their overall response spectra are compatible with seismic design spectrum with 5% critical viscous damping. The input ground motions applied to this study have identical elastic acceleration response spectra, but have different phase angles. The purpose of this study is to investigate their validity as input ground motion for nonlinear seismic response analysis. As expected, the response quantifies by simulated earthquake waves present better stable than those by real recording of ground motion. It was concluded that the artificial earthquake waves generated in this paper are applicable as input ground motions for a seismic response analysis of building structures. It was also found that strength of input ground motions for seismic analysis are suitable to be normalize as elastic acceleration spectra.

Performance Evaluation of Steel Moment Frame Buildings with Different Response Modification Factors (반응수정계수의 영향에 따른 철골조 빌딩의 내진 성능 평가)

  • Lee, Ki-Hak
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.201-208
    • /
    • 2006
  • This study lotuses on the seismic behavior of 3-, 9-, and 20-story steel moment resisting frame (MRF) structures designed in accordance with the 2000 International Building Code using different Response Modification factors (R factors) 8, 9, 10, 11, and 12. For a detailed case study, 30 different structures were evaluated for twenty ground motions representing the hazard level which is equal to a 2% probability exceeding in 50 years (2% in 50 years). The results showed that the current R factors provide conservative designs for the 3- and 9-story buildings for the Collapse Prevention performance objective. However, the 20-story buildings designed without using the minimum requirement of spectral acceleration CS prescribed in the IBC 2000 did not satisfy the seismic performance for Collapse Prevention performance.

  • PDF

Leak Before Break Evaluation of Surge Line by Considering CPE under Beyond Design Basis Earthquake (설계초과지진시 CPE를 고려한 밀림관 파단전누설 평가)

  • Seung Hyun Kim;Youn Jung Kim;Han-geol Lee;Sun Yeh Kang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.1
    • /
    • pp.19-25
    • /
    • 2022
  • Nuclear Power Plants (NPP) should be designed to have sufficient safety margins and to ensure seismic safety against earthquake that may occur during the plant life time. After the 9.12 Gyeongju earthquake accident, the structural integrity of nuclear power plants due to the beyond design basis earthquake is one of key safety issues. Accordingly, it is necessary to conduct structural integrity evaluations for domestic NPPs under beyond design basis earthquake. In this study, the Level 3 LBB (Leak Before Break) evaluation was performed by considering the beyond design basis earthquake for the surge line of a OPR1000 plant of which design basis earthquake was set to be 0.2g. The beyond design basis earthquake corresponding to peak ground acceleration 0.4g at the maximum stress point of the surge line was considered. It was confirmed that the moment behaviors of the hot leg and pressurized surge nozzle were lower than the maximum allowable loading in moment-rotation curve. It was also confirmed that the LBB margin could be secured by comparing the LBB margin through the Level 2 method. It was judged that the margin was secured by reducing the load generated through the compliance of the pipe.

Earthquake-induced Liquefaction Areas and Safety Assessment of Facilities (지진으로 인한 액상화 지역 및 시설물 안정성 평가)

  • Jeon, Sang-Soo;Heo, DaeYang;Lee, Sang-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.133-143
    • /
    • 2018
  • Liquefaction is one of secondary damages after earthquake and has been rarely reported until earthquake except Mw = 5.4 15 November 2017 Pohang earthquake in Korea. In recent years, Mw = 5.8 12 September 2016 Gyeongju earthquake and Mw = 5.4 15 November 2017 Pohang earthquake, which induced liquefaction, occurred in fault zone of Yangsan City located at south-eastern part of Korea. This explains that Korea is not safe against liquefaction induced by earthquake. In this study, the distance between the centroid of administrative district and the epicenter located at Yangsan fault, peak ground velocity (PGA) induced by both Mw = 5.0 and 6.5, and liquefaction potential index (LPI), which is calculated by using groundwater level and standard penetration test results of 274 in the area of Gimhae city located in adjacent to Nakdong river and across Yangsan fault, have been estimated and then kriging method using geographical information systems has been used to evaluate liquefaction effects on the damage of facilities. This study presents that Mw = 5.0 earthquake induces a small and low level of liquefaction resulting in slight damage of facilities but Mw = 6.5 earthquake induces a large and high level of liquefaction resulting in severe damage of facilities.

Hypocentral Depth Determination of Gyeongju Earthquake Aftershock Sequence (경주 지진 여진의 진원 깊이 연구)

  • Chung, Tae Woong;Iqbal, Muhammad Zafar
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • Hypocentral depths of 103 aftershocks of the 12 September 2016 Gyeongju earthquake (ML 5.8) were inverted by epicentral relocation, using HYPO71 and HYPOINVERSE. From the comparison of seven models that reflect regional velocity structure in the southern Korean Peninsula, HYPO71 with linear weighting over the whole range showed less residuals than HYPOINVERSE for the model near the epicenter. Less uncertainties of focal depths were observed for the events with large magnitude and short range of the closest S-phase distance.

Investigation the effect of dynamic loading on the deformation of ancient man-made underground spaces

  • Rezaee, Hooman;Noorian-Bidgoli, Majid
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.277-287
    • /
    • 2022
  • The ancient underground cities are a collection of self-supporting spaces that have been manually excavated in the soil or rock in the past. Because these structures have a very high cultural value due to their age, the study of their stability under the influence of natural hazards, such as earthquakes, is very important. In this research, while introducing the underground city of Ouyi Nushabad located in the center of Iran as one of the largest man-made underground cities of the old world, the analysis of dynamic stability is performed. For this purpose, the dynamic stress-displacement analysis has been performed through numerical modeling using the finite element software PLAXIS. At this stage, by simulating the Khorgo earthquake as one of the large-scale earthquakes that occurred in Iran, with a magnitude of 6.9 on the Richter scale, dynamic analysis by time history method has been performed on three selected sections of underground spaces. This study shows that the maximum amount of horizontal and vertical dynamic displacement is 12.9 cm and 17.7 cm, respectively, which was obtained in section 2. The comparison of the results shows that by increasing the cross-sectional area of the excavation, especially the distance between the roof and the floor, in addition to increasing the amount of horizontal and vertical dynamic displacement, the obtained maximum acceleration is intensified compared to the mapping acceleration applied to the model floor. Therefore, preventive actions should be taken to stabilize the excavations in order to prevent damage caused by a possible earthquake.

Liquefaction Resistance of Pohang Sand (포항모래의 액상화 저항 특성에 관한 연구)

  • Park, Sung-Sik;Nong, Zhenzhen;Choi, Sun-Gyu;Moon, Hong-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.9
    • /
    • pp.5-17
    • /
    • 2018
  • A magnitude 5.4 earthquake struck the city of Pohang, North Gyeongsang Province, South Korea on November 15, 2017. Many sand volcanoes were observed on paddy fields, parks and roads. This phenomenon was the first to be observed as a sign of soil liquefaction in South Korea. In this study, two different kinds of ejected Pohang sands were collected from a liquefied paddy field. Those sands were reconstituted into loose and dense conditions and then a series of cyclic simple shear tests were conducted under confining stresses of 100 and 200 kPa. A real earthquake motion was also repetitively applied to the specimen. As a result of constant shear stress tests, the cyclic resistance ratio (CRR) of loose sand was 0.12-0.14, while the CRR value of dense sand was 0.17-0.21. It was shown that the relative density was more influencing factor on liquefaction resistance than the sand types and initial confining stress. When a real Pohang earthquake motion was repetitively applied to the specimen, a loose sand was liquefied at the second earthquake motion but the dense sand at the third earthquake motion.