• Title/Summary/Keyword: 8q24.21

Search Result 64, Processing Time 0.026 seconds

A Case of a del(8p)/dup(8q) Recombinant Chromosome (8번 염색체 단완 결실과 장완 중복을 동반한 신생아 1례)

  • Kim, Jeong-Young;Im, Hyo-Bin;Son, Sang-Hee;Jeong, So-Young;Sung, Min-Jung;Seo, Son-Sang
    • Neonatal Medicine
    • /
    • v.16 no.1
    • /
    • pp.76-80
    • /
    • 2009
  • A male baby with intrauterine growth retardation had a short neck, small hands and feet, hypospadia, both grade I hydronephrosis, type II atrial septal defect, and moderate valvular pulmonary stenosis. The routine chromosome and banding analyses revealed a 46,XY,rec(8)del(8)(p21)dup(8) (q24.1)inv(8)(p21q24.1)pat chromosome constitution. His mother has normal chromosomes, but the father had 46,XY,inv(8)(p21q24.n Also his uncle had an inv(8) chromosome constitution. We used lymphocytes and examined 40 mitotic cells. All mitotic cells showed deletion of 8p21-->pter and duplication of 8q24.1 -->qter. Because Sp21 involves secretion of macrophage and lymphocyte against cancer cells, long-term follow-up for cancer will be needed.

GENETIC ALTERATIONS OF HUMAN ORAL CANCERS USING COMPARATIVE GENOMIC HYBRIDIZATION (Comparative genomic hybridization 기법을 이용한 인체 구강암의 유전자 변화에 대한 연구)

  • Lee, Myeong-Reoyl;Shim, Kwang-Sup;Lee, Young-Soo;Woo, Soon-Seop;Kong, Gu
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.3
    • /
    • pp.245-253
    • /
    • 2000
  • The development and progression of oral cancer is associated with an accumulation of multiple genetic alterations through the multistep processes. Comparative genomic hybridization(CGH), newly developed cytogenetic and molecular biologic technique, has been widely accepted as a useful method to allow the detection of genetic imbalance in solid tumors and the screening for chromosome sites frequently affected by gains or losses in DNA copy number. The authors examined 19 primary oral squamous cell carcinomas using CGH to identify altered chromosome regions that might contain novel oncogenes and tumor suppressor genes. Interrelationship between these genetic aberrations detected and major oncogenes and tumor suppressor genes previously recognized in carcinogenesis of oral cancers was studied. 1. Changes in DNA copy number were detected in 14 of 19 oral cancers (78.9%, mean: 5.58, range: $3{\sim}13$). High level amplification was present in 4 cases at 9p23, $12p21.1{\sim}q13.1$, 3q and $8q24{\sim}24.3$. Fourteen cases(78.9%, mean: 3.00, range: $1{\sim}8$) showed gains of DNA copy number and 12 cases(70.5%, mean: 2.58, range: $1{\sim}9$) revealed losses of DNA copy number. 2. The most common gains were detected on 3q(52.6%), 5p(21.0%), 8q(21.0%), 9p(21.0%), and 11q(21.0%). The losses of DNA copy number were frequently occurred at 9p(36.8%), 17q(36.8%), 13q(26.3%), 4p(21.0%) and 9p(21.0%). 3. The minimal common regions of gains were repeatedly observed at $3q24{\sim}26.7$, $3q27{\sim}29$, $1q22{\sim}31$, $5p12{\sim}13.3$, $8q23{\sim}24$, and 11q13.1-13.3. The minimal common regions of losses were detected at $9q11{\sim}21.3$, 17p31, $13q22{\sim}34$, and 14p16. 4. In comparison of CGH results with tumor stages, the lower stage group showed more frequent gain at 3q, 5q, 9p, and 14q, whereas gains at 1q($1q22{\sim}31$) and 11q($11q13.1{\sim}13.3$) were mainly detected in higher stage group. The loss at $13q22{\sim}34$ was exclusively detected in higher stage. The results indicate that the most frequent genetic alterations in the development of oral cancers were gains at $3q24{\sim}26.3$, $1q22{\sim}31$, and $5p12{\sim}13.3$ and losses at $9q11{\sim}21.3$, 17p31, and 13q. It is suggested that genetic alterations manifested as gains at $3q24{\sim}26.3$, $3q27{\sim}29$, $5p12{\sim}13.3$ and 5p are associated with the early progression of oral cancer. Gains at $1q22{\sim}31$ and $11q13.1{\sim}13.3$ and loss at 13q22-34 could be involved in the late progression of oral cancers.

  • PDF

Acute Myeloid Leukemia with t(8;21)(q22;q22) (AML1/ETO) in a Patient with Marked Hypocellularity and Low Blasts Count

  • Chun, Sung-Ho;Cho, Hee-Soon;Lee, Chae-Hoon;Kim, Kyung-Dong;Kim, Min-Kyoung;Hyun, Myung-Soo;Jung, Soon-Il
    • Journal of Yeungnam Medical Science
    • /
    • v.24 no.1
    • /
    • pp.85-90
    • /
    • 2007
  • According to the World Health Organization (WHO) classification system, cases with t(8;21)(q22;q22) should be diagnosed as acute myeloid leukemia (AML) even with a blast count of less than 20 percent in blood or bone marrow. It is an uncommon manifestation, moreover hypocellularity is rarely observed in this subtype of leukemia. Here, we report a case of t(8;21) in a patient with marked hypocellularity of less than 5 percent and a blast count of less than 20 percent. This patient responded relatively well to chemotherapy. An allogeneic bone marrow transplantation was performed with good engraftment. This case suggests that hypocellular AML with a t(8;21) has as good a prognosis as hypercellular AML with t(8;21).

  • PDF

Construction of Deletion Map of 16q by LOH Analysis from HCC Patients and Physical Map on 16q 23.3 - 24.1 Region

  • Chung, Jiyeol;Choi, Nae Yun;Shim, Myoung Sup;Choi, Dong Wook;Kang, Hyen Sam;Kim, Chang Min;Kim, Ung Jin;Park, Sun Hwa;Kim, Hyeon;Lee, Byeong Jae
    • Genomics & Informatics
    • /
    • v.1 no.2
    • /
    • pp.101-107
    • /
    • 2003
  • Loss of heterozygosity (LOH) has been used to detect deleted regions of a specific chromosome in cancer cells. LOH on chromosome 16q has been reported to occur frequently in progressed hepatocellular carcinoma (HCC). Liver tissues from 37 Korean HCC patients were analyzed for LOH by using 25 polymorphic microsatellite markers distributed along 16q. Out of the 37 HCC patients studied, 21 patients (56.8%) showed LOH in various regions of 16q with at least one polymorphic marker. Puring the analysis of these 21 LOH cases, 6 patients showed interstitial LOHs in which the boundary of the LOH region was defined. With two rounds of LOH analysis, five commonly occurring interstitial LOH regions were identified; 16q21-22.1, 16q22.2 - 22.3, 16q22.3, 16q23.2 and 16q23.3 - 24.1. Among the five LOH regions the 16q23.3 - 24.1 region has been reported to be related with chromosome instability. A complete physical map, which covers the 3.2 Mb region of 16q23.3 - 24.1 (D16S402 and D16S486), was constructed to identify novel candidate tumor suppressor genes. We provide the minimally tiling path map consisting of 28 BAC clones. There was one gap between NT_10422.11 and NT_019609.9 of the human genome sequence contig (NCBI sequence build 33, April 29, 2003). This gap can be filled by sequencing the R-1425M20 clone which bridges these sequence contigs.

Cytogenetic Analysis in Korean Head and Neck Cancer Cell Lines: Comparative Genomic Hybridization(CGH) and Array-CGH (두경부 편평상피세포암 세포주의 염색체 이상 분석: 비교유전체보합법과 Array 비교유전체보합법)

  • Shin, You-Ree;Park, Soo-Yeun;Lee, Dong-Wook;Kim, Han-Su;Go, Young-Min;Park, Hyun-Joo;Choung, Sung-Min
    • Korean Journal of Head & Neck Oncology
    • /
    • v.24 no.1
    • /
    • pp.33-42
    • /
    • 2008
  • Head and neck squamous cell carcinoma(HNSCC) is notorious for its poor outcome and increasing incidence. But, the studies of cytogenetic analysis in HNSCC are relatively rare, because of difficulties in culturing solid tumor cells and complexity in chromosomal DNA abberations associated with the lesions. The purpose of this study is to evaluate the location of chromosomal aberrations in Korean HNSCC cell lines (SNU-1041, 1066, and 1076) with comparative genomic hybridization(CGH) and array based CGH(array-CGH). Chromosomal gains of 3q23-q27, 5p13-p15.3, 7p21-pter, 8q11.2-q12, 8q21.1-qter, 9q22-q34, 16q22-q24, and 20q11.2-qter, as well as chromosomal losses on 3p10-p14 were found in all 3 SNU cell lines. Losses on 3p15- p23, 4q22-q27, 4q31.3-qter, 6q14-q15, 7q31-q34, 8p12-pter, 18q21-q23, and 21q11.2-q12 were observed in 2 of 3 cell lines. In array-CGH, many genes were altered including gains of PIK3CA, MYC, EVI1, MAD1L1 genes and losses of SERPIN genes. These aberrations of gene and chromosome coincide with other results of study, generally. These data about the patterns of chromosomal aberrations could be a basic step for understanding more detailed genetic events in the carcinogenesis and also provide information for diagosis and treatment in HNSCC.

Chemical Constituents of Domestic Quercus spp. Barks (국내산 참나무속 수종 수피의 추출성분)

  • Kim, Jin-Kyu;Kwon, Dong-Joo;Lim, Soon-Sung;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.359-374
    • /
    • 2010
  • This study was carried out to investigate the chemotaxonomical correlation and chemical constituents of domestic Quercus spp. barks. The barks of Q. mongolica, Q. aliena, Q. serrata, Q. acutissima, Q. dentata, and Q. variabilis were collected in the experimental forest of Kangwon National University. The combined extracts were successively fractionated with n-hexane, methylene chloride and ethyl acetate using a separation funnel. A portion of the ethyl acetate and H2O soluble materials of each species were chromatographed on a Sephadex LH-20 column using various aqueous MeOH and EtOH-hexane as washing solvents. Spectrometric analysis such as NMR and MS, including TLC, were performed to characterize the structures of the isolated compounds. Ellagic acid (0.03 g), (+)-catechin (4.59 g), taxifolin (3.35 g), and glucodistylin (20.52 g) were isolated from Q. mongolica bark. Gallic acid (0.18 g), (+)-catechin (8.52 g), (+)-gallocatechin (0.09 g), taxifolin (0.54 g), and glucodistylin (3.28 g) were characterized from Q. acutissima bark. Gallic acid (0.38 g), ellagic acid (0.11 g), (+)-catechin (2.01 g), (+)-gallocatechin (0.12 g), and glucodistylin (0.39 g) were identified from Q. dentata bark. Ellagic acid (1.51 g), (+)-catechin (21.91 g), and glucodistylin (3.91 g) were purified from Q. aliena bark. Ellagic acid (0.84 g), (+)-catechin (0.82 g), taxifolin (4.02 g), and glucodistylin (21.50) were isolated from Q. serrata bark. Gallic acid (0.24 g), caffeic acid (0.05 g), (+)-catechin (0.32 g), and glucodistylin (0.65 g) were purified from Q. variabilis bark. (+)-Catechin and glucodistylin were isolated from all the barks. Glucodistylin can be a taxonomic index on Quercus spp.

Litter Production and Nutrient Contents of Litterfall in Oak and Pine Forests at Mt. Worak National Park

  • Mun, Hyeong-Tae;Kim, Song-Ja;Shin, Chang-Hwan
    • Journal of Ecology and Environment
    • /
    • v.30 no.1
    • /
    • pp.63-68
    • /
    • 2007
  • Litter production, nutrient contents of each component of litterfall and amount of nutrients returned to forest floor via litterfall were investigated from May 2005 through April 2006 in Quercus mongolica, Quercus variabilis and Pinus densiflora forests at Mt. Worak National Park. Total amount of litterfall during one year in Q. mongolica, Q. variabilis and P. densiflora forests was 542.7, 459.2 and $306.9\;g\;m^{-2}\;yr^{-1}$, respectively. Of the total litterfall, leaf litter, branch and bark, reproductive organ and the others occupied 50.3%, 22.7%, 10.1 % and 16.9% in Q. mongolica forest, 81.9%, 7.2%, 3.1% and 7.9% in Q. variabilis forest, 57.4%, 12.8%, 5.6% and 24.1 % in P. densiflora forest, respectively. Nutrients concentrations in oak litterfall were higher than those in needle litter. N, P, K, Ca and Mg concentration in leaf litterfall were 13.8, 1.1, 7.2, 4.2 and 1.3 mg/g for Q. mongolica forest, 10.5, 0.7, 3.2, 3.7 and 1.6 mg/g for Q. variabilis forest, 5.3, 0.4, 1.2, 2.8 and 0.6mg/g for P. densiflora forest, respectively. The amount of annual input of N, P, K, Ca and Mg to the forest floor via litterfall was 43.36, 2.89, 21.38, 23.31 and $5.62\;kg\;ha^{-1}\;yr^{-1}$ for Q. mongolica forest, 32.28, 2.01, 10.23, 20.29 and $7.78\;kg\;ha^{-1}\;yr^{-1}$ for Q. variabilis forest, 15.80, 1.04, 3.99, 9.70 and $2.10\;kg\;ha^{-1}\;yr^{-1}$ for P. densiflora forest, respectively.

Big Data! What do you think about that ? ; Using the Subjectivity of Sports Practitioner (빅 데이터!, 당신의 생각은 어떠하십니까? : 스포츠실무자의 주관성을 바탕으로)

  • Choi, Jai Seuk;Lee, Doh-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.5
    • /
    • pp.149-156
    • /
    • 2021
  • This study started from the question of what we think about big data as the term "big data" was used and discussed in our daily lives in the era of the 4th industrial revolution. For the analysis, the final 30 Q samples were selected based on prior research related to big data, and 23 respondents were secured for Q analysis, and the following results were derived. First, the explanatory power of each type was 34.30% for , 8.03% for , 7.21% for , and 6.24% for , showing a total of 55.69%. Second, the Q sample emphasized by respondents by each type shows various occupational distributions in , and for 'big data', it is 'digital' and future'. So they were named 「Digital Type」. In , the distribution of 'social workers' was high, and for 'big data', 'future', 'collaboration', 'welfare', 'local residents', and 'defense' were emphasized. It was named 「welfare type」. In , the job distribution of respondents appeared evenly, and it was named as 「Convergence Type」. Because it emphasized statements such as 'convergence', 'digital', 'future', and 'sports'. is composed of association officials, sports instructors, and graduate students, and was named 「Artificial Intelligence Type」, because it emphasizes 'artificial intelligence', 'new paradigm', 'network', and 'sports'. In the age of knowledge industrialization and knowledge informatization that followed industrialization and informatization, how to process and utilize the numerous data accumulated over the years is an important task. Right now, in sports, more than anything else, it is necessary to continuously seek ways to utilize and activate accumulated big data.

Application of array comparative genomic hybridization in Korean children under 6 years old with global developmental delay

  • Lee, Kyung Yeon;Shin, Eunsim
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.9
    • /
    • pp.282-289
    • /
    • 2017
  • Purpose: Recent advancements in molecular techniques have greatly contributed to the discovery of genetic causes of unexplained developmental delay. Here, we describe the results of array comparative genomic hybridization (CGH) and the clinical features of 27 patients with global developmental delay. Methods: We included 27 children who fulfilled the following criteria: Korean children under 6 years with global developmental delay; children who had at least one or more physical or neurological problem other than global developmental delay; and patients in whom both array CGH and G-banded karyotyping tests were performed. Results: Fifteen male and 12 female patients with a mean age of $29.3{\pm}17.6months$ were included. The most common physical and neurological abnormalities were facial dysmorphism (n=16), epilepsy (n=7), and hypotonia (n=7). Pathogenic copy number variation results were observed in 4 patients (14.8%): 18.73 Mb dup(2)(p24.2p25.3) and 1.62 Mb del(20p13) (patient 1); 22.31 Mb dup(2) (p22.3p25.1) and 4.01 Mb dup(2)(p21p22.1) (patient 2); 12.08 Mb del(4)(q22.1q24) (patient 3); and 1.19 Mb del(1)(q21.1) (patient 4). One patient (3.7%) displayed a variant of uncertain significance. Four patients (14.8%) displayed discordance between G-banded karyotyping and array CGH results. Among patients with normal array CGH results, 4 (16%) revealed brain anomalies such as schizencephaly and hydranencephaly. One patient was diagnosed with Rett syndrome and one with $M{\ddot{o}}bius$ syndrome. Conclusion: As chromosomal microarray can elucidate the cause of previously unexplained developmental delay, it should be considered as a first-tier cytogenetic diagnostic test for children with unexplained developmental delay.

Chromosome Imbalances and Alterations of AURKA and MYCN Genes in Children with Neuroblastoma

  • Inandiklioglu, Nihal;Yilmaz, Sema;Demirhan, Osman;Erdogan, seyda;Tanyeli, Atila
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5391-5397
    • /
    • 2012
  • Background: Neuroblastoma (NB), like most human cancers, is characterized by genomic instability, manifested at the chromosomal level as allelic gain, loss or rearrangement. Genetics methods, as well as conventional and molecular cytogenetics may provide valuable clues for the identification of target loci and successful search for major genes in neuroblastoma. We aimed to investigate AURKA and MYCN gene rearrangements and the chromosomal aberrations (CAs) to determine the prognosis of neuroblastoma. Methods: We performed cytogenetic analysis by G-banding in 25 cases [11 girls (44%) and 14 boys (66%)] and in 25 controls. Fluorescence in situ hybridization (FISH) with AURKA and MYCN gene probes was also used on interphase nuclei to screen for alterations. Results: Some 18.4% of patient cells exhibited CAs., with a significant difference between patient and control groups in the frequencies (P<0.0001). Some 72% of the cells had structural aberrations, and only 28% had numerical chnages in patients. Structural aberrations consisted of deletions, translocations, breaks and fragility in various chromosomes, 84% and 52% of the patients having deletions and translocations, respectively. Among these expressed CAs, there was a higher frequency at 1q21, 1q32, 2q21, 2q31, 2p24, 4q31, 9q11, 9q22, 13q14, 14q11.2, 14q24, and 15q22 in patients. 32% of the patients had chromosome breaks, most frequently in chromosomes 1, 2, 3, 4, 5, 8, 9, 11, 12, 19 and X. The number of cells with breaks and the genomic damage frequencies were higher in patients (p<0.001). Aneuploidies in chromosomes X, 22, 3, 17 and 18 were most frequently observed. Numerical chromosome abnormalities were distinctive in 10.7% of sex chromosomes. Fragile sites were observed in 16% of our patients. Conclusion: Our data confirmed that there is a close correlation between amplification of the two genes, amplification of MYCN possibly contributing significantly to the oncogenic properties of AURKA. The high frequencies of chromosomal aberrations and amplifications of AURKA and MYCN genes indicate prognostic value in children with neuroblastomas and may point to contributing factors in their development.