• Title/Summary/Keyword: 86 Generation

Search Result 312, Processing Time 0.024 seconds

Performance of Cooperative NOMA Systems with Cognitive User Relay (상황인지 사용자 릴레이를 채택한 협동 NOMA 시스템의 성능)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.69-75
    • /
    • 2018
  • Recently, Non-orthogonal multiple access (NOMA) has been focused for the next generation multiple access, which has more spectral efficiency under the limited spectrum bandwidth. Moreover, the spectrum efficiency can be improved by cognitive radio in which the unlicensed secondary users can access the spectrum that is used by the licensed primary user under the limited interference. Hence, we consider the combination of NOMA and cognitive radio, and derive the performance of the cognitive cooperative NOMA system. For the cooperation, a relay is selected among near users, and the selection combining is assumed at a far user. The outage probability of the selected relay and the far user is derived in closed-form, respectively. The provided numerical results are matched well with the Monte Carlo simulation. Numerical results showed that the performance of the relay is affected from the power allocation coefficient, the minimum outage probability is observed at 0.86 of the power allocation coefficient for far user under the given conditions. More than 15 dB of signal-to-noise ratio is required to meet the outage probability of $1{\times}10^{-13}$ for the far user with the frequency acquisition probability of 0.5 compared to that of 1. It shows that the performance of the far user is very sensitive to the acquisition probability of the cognitive relay.

Syntheses and Properties of Isosorbide-based Cationic Gemini Surfactants (이소소르비드 기반의 양이온 제미니 계면활성제 합성 및 물성)

  • Cho, Jung-Eun;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.429-437
    • /
    • 2020
  • In this study, a cationic gemini surfactant was synthesized using isosorbide, in order to modify the alkyl chain length in the range of C10~C16. The c.m.c and surface tension of the synthesized cationic gemini surfactant were measured to be in the ranges of 5.13 × 10-4~1.62 × 10-4 mol/L and 31.86~37.41 dyne/cm, respectively. The surface tension increased with increasing the length of the alkyl group. In addition, as the area per molecule occupied by the surfactant adsorbed on the interface increased with the reduced extent of adsorption, the bubble generation at the air-water interface decreased. The emulsifying capacity in benzene was maintained above 60 ± 5% after 8 h while that in soybean oil tended to decrease above 50 ± 5%. The performance was superior in benzene, a highly hydrophobic substance, and the emulsion stability was shown to be consistent beyond 1 h during the preparation of pre-emulsion in oil and water. The antimicrobial activity was dependent on the length of the hydrophobic chain of the synthesized cationic gemini surfactant due to the increased size of the clean zone in Escherichia coli (E.coli) and Staphylococcus aureus.

Development and Cost-effective Evaluation of Grass Blocks Minimizing Construction Waste (건설폐기물을 최소화한 비용 효율적 잔디 블록 기법 개발 및 평가)

  • Jeon, Minsu;Hong, Jungsun;Jeon, Jechan;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.359-365
    • /
    • 2017
  • Impermeable surfaces such as transportation land uses including roads and parking lots accumulate high heavy metals and particulate matters concentration especially during dry season which worsens the river water quality and distort the water circulation system during rainfall events. Recently, the government has been promoting policies to install Low Impact Development (LID) facilities such as permeable pavements or grass blocks in parking lots or pavements. However, transition of asphalt-paved surfaces to permeable pavement generated asphalt wastes which are detrimental to the environment and has cost implications due to its removal and disposal. Therefore this study was conducted to provide a method of constructing a cost-effective permeable pavement to reduce waste generation and cost. In this study, comparative analysis of the water circulation capacity and economic efficiency of the traditional construction method and new method proposed in this study through the lab-scale experiment. The proposed method was to make holes in existing asphalt pavements, layout geotextile fabric and permeable base media such as sand before compaction. After compaction, layout grass blocks on the compacted base media then layout sand in between each grass blocks before compaction. Apparently, there was no significant difference between the traditional installation method of permeable pavement and the proposed method in this study considering surface runoff, infiltrated volume, stored volume, and rainfall-runoff delay time. The proposed method in this study generated 86% less wastes compared to the traditional installation method and has 70% cost reduction considering asphalt removal and disposal. The construction method proposed in this study yielded similar performance compared to the traditional installation method and water circulation effect, but was proven to be less complicated and economical.

Analysis of Land Use Change within Four Major River Areas Using High-Resolution Air-Photographs: The Case of the Nakdong River Basin (고해상도 항공사진을 이용한 4대강 하천구역 내 토지이용변화 분석 - 낙동강 유역을 사례로)

  • Park, Soo-Kuk;Kim, Jin;Lee, Kil-Jae;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.4
    • /
    • pp.171-188
    • /
    • 2013
  • Landuse changes and cadastral information error categories in the four major river areas were analyzed for the use of policy data as cadastral re-arrangement of national and public lands would be required, using high-resolution air-photographs and cadastral maps before and after the river development. The study sites were the river areas of 40km around four dams of the Nakdong river where their landuses were changed most. As the results, national and public lands reached 79.9% of land parcels and 93.3% of land areas of the study sites similar with those of the four river areas, 84.3% of land parcels and 85.5% of land areas. The landuse classification of the study sites before the four river development was consisted most of 'river'(71.6%) and 'rice field'(12.3%), but after the development the 'river' was reduced to 42.7% and 'park area'(19.6%) including sport fields and 'mixed lots'(20.8%) were increased. Also, 86.7% of land parcels before the development could be reduced after the development if administrative districts and land ownerships were not considered. Cadastral information error categories can be found as cadastral polygon missing, polygon overlap, location and boundary non-coincidence, small polygon generation, and non-coincidence between cadastral boundary and river boundary. Landuse change monitoring method using air-photographs will be useful to analyze landuse state through fast information aquisition and to manage properties of national and public lands such as river areas.

Estimation of Water Quality Environment in Youngsan and Seumjin River Basins (영산강과 섬진강 유역의 하천 수질환경 평가)

  • 양해근;최희철
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.1
    • /
    • pp.16-31
    • /
    • 2003
  • The water quality environment in Youngsan and Seumjin river basins was investigated based on the concept of the comprehensive Water Quality Index (WQI) and a spacial pollution source. Artificial factors influencing to river water quality have been analyzed. The specific delivery load of Youngsan river basin was found to be 8.34~97.25 kg/day/$\textrm{km}^2$, Gomagwon stream and Gwangju stream showed the relatively high rates as 97.25 kg/day/$\textrm{km}^2$ and 86.06 kg/day/$\textrm{km}^2$, respectively. The specific delivery load in Seumjin river basin was estimated to be 10.98∼19.51 kg/day/$\textrm{km}^2$, Suggesting no Significant Contribution of pollution. WQI of Youngsan watershed revealed 1.36~3.45, whereas Seumjin watershed showed a relatively low value of 0.5~1.47 And it is concluded that the specific delivery load suggested in this study provides the essential core data of the upper limit of pollutants receptor in the watershed area studied. From this study, it is suggested that the integrated environmental management of river basin requires the analysis of pollutants generation rate of the basin and the receptor capability for the self-purification.

A Study on Energy Efficiency Improvement of LDC Recycling Load Tester (LDC 재생형 부하 시험기의 효율 개선에 관한 연구)

  • Lee, Choon-il;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.86-92
    • /
    • 2016
  • A high-capacity battery installed in a hybrid vehicle or electric vehicle is used to power, or as a power supply for, electric sub-assemblies. In order to use a high-capacity battery as a power supply for electric sub-assemblies, such as an electronic control unit or for lighting, radio, and navigation, there is a need for a DC converter that changes a high voltage of 240-400V to a low voltage of 12-14V, which is done with a low-voltage DC-DC converter (LDC). An LDC undergoes long-term aging so as to reduce latent defects in the production process. With regard to the usual aging method, an LDC is a DC-DC converter. So, a DC power supply is connected and used as input, and a programmable DC electronic load is the output. For stable operation, a product having a larger capacity by 10% (compared to an LDC) is used, and has a structure where electric power is dissipated into 100% heat. So, there is a problem with volume, based on the use of two pieces of equipment to test the LDC, and another problem based on the generation of heat in the programmable DC electronic load. Hence, this paper suggests a load test method as a way of recycling, where a significant portion of the electricity dissipated as heat in a load tester is returned as input. The method realizes savings of 80% or more in the electricity dissipated as heat through improvement in the efficiency of the recycling load tester.

Characteristics of Summer Marine Algal Community and Barren Ground in the Southern Coast of Jeju, Korea (제주 남부해역 조하대 하계 해조군집 및 갯녹음 특성)

  • Jung, Seung Wook;Jeon, Byung-Hee;Choi, Chang Geun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.212-219
    • /
    • 2019
  • This study was conducted to investigate marine algal community characteristics and the status of barren ground in the summer at study sites on Jeju Island, Korea. Sampling was carried out from July to September 2017 using a qualitative and quantitative survey (including coverage of non-geniculated coralline algae and density of grazer) by scuba diving. A total of 121 species were identified, including 11 (9.1 %) green algae, 24 (19.8 %) brown algae, and 86 (71.1 %) red algae. Hyeongjeseom had the greatest diversity, with 60 species, and Harye the least, with 18 species. The mean biomass at the study sites was $1,503.0g{\cdot}m^{-2}$, while the mean for the neighboring islets ($3,268.7g{\cdot}m^{-2}$) was higher than that of the main island ($914.7g{\cdot}m^{-2}$). Also, dominant species was identified: Sargassum macrocarpum at the neighboring islets, and Ecklonia cava at the main island, with differences showing not only in biomass but also species composition. In conclusion, the marine algal community status in summer at the study sites was evaluated based on the algal community characteristics (species composition, biomass, biomass ratio of kelp species), coverage of non-geniculated coralline algae, and density of grazer. As a result, both Hyeongjeseom and Marado require preservation and management to maintain their excellent marine algal communities, and other sites on the main island require the creation and/or restoration of marine algal communities. In addition, as the generation of barren ground accelerates, it is urgent not only to grasp existing monitoring research but also to identify the status of the marine algal community where it is not known at present.

Development of Marine Debris Monitoring Methods Using Satellite and Drone Images (위성 및 드론 영상을 이용한 해안쓰레기 모니터링 기법 개발)

  • Kim, Heung-Min;Bak, Suho;Han, Jeong-ik;Ye, Geon Hui;Jang, Seon Woong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1109-1124
    • /
    • 2022
  • This study proposes a marine debris monitoring methods using satellite and drone multispectral images. A multi-layer perceptron (MLP) model was applied to detect marine debris using Sentinel-2 satellite image. And for the detection of marine debris using drone multispectral images, performance evaluation and comparison of U-Net, DeepLabv3+ (ResNet50) and DeepLabv3+ (Inceptionv3) among deep learning models were performed (mIoU 0.68). As a result of marine debris detection using satellite image, the F1-Score was 0.97. Marine debris detection using drone multispectral images was performed on vegetative debris and plastics. As a result of detection, when DeepLabv3+ (Inceptionv3) was used, the most model accuracy, mean intersection over union (mIoU), was 0.68. Vegetative debris showed an F1-Score of 0.93 and IoU of 0.86, while plastics showed low performance with an F1-Score of 0.5 and IoU of 0.33. However, the F1-Score of the spectral index applied to generate plastic mask images was 0.81, which was higher than the plastics detection performance of DeepLabv3+ (Inceptionv3), and it was confirmed that plastics monitoring using the spectral index was possible. The marine debris monitoring technique proposed in this study can be used to establish a plan for marine debris collection and treatment as well as to provide quantitative data on marine debris generation.

Analysis of Electrochemical Properties of Sulfide All-Solid-State Lithium Ion Battery Anode Material Using Amorphous Carbon-Removed Graphite (비정질 탄소가 제거된 흑연을 이용한 황화물계 전고체 리튬이온전지 음극소재 전기화학적 특성 분석)

  • Choi, Jae Hong;Oh, Pilgun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.58-63
    • /
    • 2022
  • Graphite has been used as an anode material for lithium-ion batteries for the past 30 years due to its low de-/lithiation voltage, high theoretical capacity of 372 mAh/g, low price, and long life properties. Recently, all-solid-state lithium-ion batteries (ASSLB), which are composed of inorganic solid materials with high stability, have received great attention as electric vehicles and next-generation energy storage devices, but research works on graphite that works well for ASSLB systems are insufficient. Therefore, we induced the performance improvement of ASSLB anode electrode graphite material by removing the amorphous carbon present in the carbon material surface, acting as a resistive layer from the graphite. As a result of X-ray diffraction (XRD) analysis using heat treated graphite in air at 400, 500, and 600 ℃, the full width at half maximum (FWHM) at (002) peak was reduced compared to that of bare graphite, indicating that the crystallinity of graphite was improved after heat treatment. In addition, the discharge capacity, initial coulombic efficiency (ICE) and cycle stability increased as the crystallinity of graphite increased after heat treatment. In the case of graphite annealed in air at 500 ℃, the high capacity retention rate of 331.1 mAh/g and ICE of 86.2% and capacity retention of 92.7% after 10-cycle measurement were shown.

Heterosis Effects on Jumping Height and Body Weight in Three-Way Rotational Crossing in Mice

  • Kurnianto, E.;Shinjo, A.;Suga, D.;Nakada, T.;Sunagawa, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.10
    • /
    • pp.1353-1358
    • /
    • 2000
  • The three-way rotational crossing experiment has been conducted to evaluate heterosis effects on jumping height and body weight. Yonakuni wild mice (Y) and two genetic groups of $CF_{{\sharp}1}$ (C) and C3H/HeNCrj (H) laboratory mice were used as materials. Reciprocal rotational crossing was made by crossing C male${\times}$Y female and Y male${\times}$C female to produce basic group designated $G_0$ and ${G_0}^{\prime}$, respectively. The females of the $G_0$ and ${G_0}^{\prime}$ were mated to the H sire to produce second generation ($G_1$ and ${G_1}^{\prime}$), and at the following generation the replacement females were mated to Y or C sire according to the basic group to produce $G_2$ to $G_3$ and ${G_2}^{\prime}$ to ${G_3}^{\prime}$. Individual jumping height data at Wk6 and body weight data at 1 (Wk1), 3 (Wk3), 6 (Wk6) and 10 (Wk10) weeks of age were analyzed. The results showed that effects of genetic group, sex and interaction of genetic group by sex were significant (p<0.01) for jumping height. For males, 55.34%~79.17% and 54.46%~78.29% of heterosis were reached at $G_1$ to $G_3$ and ${G_1}^{\prime}$ to ${G_3}^{\prime}$, respectively. While for females at $G_1$ to $G_3$ and at ${G_1}^{\prime}$ to ${G_3}^{\prime}$, heterosis effects were 61.53%~80.42% and 47.79%~85.86%, respectively. For body weight, genetic group was a significant source of variation at all ages studied. Sex effect was significant at Wk3, Wk6 and Wk10, and interaction between genetic group and sex was significant at Wk6 and Wk10 (p<0.01). C sires resulted in the highest body weight of offspring, while H sires were the intermediate and Y sires were the lightest. The significant positive and negative heterosis effects for body weight were exhibited. Crossing involved the Y sires in addition to smaller maternal effects of Y dams tended to result in small heterosis.