• Title/Summary/Keyword: 8421

Search Result 5, Processing Time 0.019 seconds

Analysis of Redcell and Blood Protein Typing in Mongolian Horse (몽고말의 적혈구항원형 및 혈액단백질형 분석)

  • Cho, G.J.;Cho, B.W.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.887-896
    • /
    • 2004
  • The present study was carried out to investigate the blood markers of Mongolian horses. The blood redcell types and blood protein types(biochemical polymorphisrns) were tested from 19 Mongolian horses by serological and electrophoretic procedure, and their phenotypes and gene frequencies were estimated. The blood group and biochemical polymorphism phenotypes observed with high frequency were $A^{af}$(42.1%), $C^a$(89.5%), $K^-$(84.2%), $U^a$(63.2%), $P^a$(42.1%) $P^-$42.1%), $Q^c$(31.6%) $Q^-$(31.6%), $AL^{AB}$((52.6%), AI$B^K$(89.5%), $ES^1$(63.2%), $GC^F$(78.9%), $HB^BI$1(68.4%), PG$D^F$(84.2%), $TF^{FIR}$(21.1%), $TF^{F2R}$(21.1%)(21.1%), and genotypes $D^{cgm/dghm}$(15.8%), $D^{dghm/dghm}$(15.8%), $D^{ad/dghm}$(10.5%), $D^{ade/dghm}$(10.5%), in Mongolian horses, respectively. Alleles observed with high frequency were $A^a$(0.4211), $C^a$(0.8947), $K^-$(0.8421), $U^a$(0.6316), $P^a$(0.4474), $Q^c$(0.4474), $D^{dghm}$(0.4211), $AL^B$(0.6579), $AIB^K$(0.9211), $ES^I$(0.7895), $GC^F$(0.8947), $HB^{BI}$(0.7895), $PGD^F$(0.8421) and $TF^R$(0.3421) in Mongolian horses. These results present basic information for estimating the genetic relationships between the Korean native horse, and developing a system for parentage verification and individuals identification in Mongolian horse.

An Improved Processor of Multiplication using the Addition based on H421 code (H421코드기반의 더하기 곱셈기법)

  • Park, Ji-Hoon;Kim, Man-Pil;Choi, In-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.2
    • /
    • pp.123-129
    • /
    • 2008
  • In this paper, we propose the algorithm and circuit implementation to improve the performance of Multiplication using Addition based on H421 code. We expect that our method will be an essential element to make a embedded prototype in Ubiquitous environment.

  • PDF

Evaluation of Biodegradation Kinetic in Biological Activated Carbon (BAC) Process for Drinking Waste Treatment : Effects of EBCT and Water Temperature (정수처리용 생물활성탄 공정에서 Halonitromethanes (HNMs)의 생물분해 동력학 평가 : EBCT 및 수온의 영향)

  • Son, Hee-Jong;Kang, So-Won;Yoom, Hoon-Sik;Ryu, Dong-Choon;Cho, Man-Gi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.7
    • /
    • pp.404-411
    • /
    • 2015
  • In this study, the effects of empty bed contact time (EBCT) and water temperature on the biodegradation of 9 halonitromethanes (HNMs) in biological activated carbon (BAC) process were investigated. Experiments were conducted at three water temperatures ($10^{\circ}C$, $15^{\circ}C$ and $25^{\circ}C$) and three EBCTs (5, 10 and 15 min). Increasing EBCT and water temperature increased the biodegradation efficiency of HNMs in BAC column. Dibromochloronitromethane (DBCNM) and tribromonitromethane (TBNM) showed the highest biodegradation efficiency, but chloronitromethane (CNM) and dichloronitromethane (DCNM) were the lowest. The kinetic analysis suggested a pseudo-first-order reaction model for biodegradation of 7 HNMs at various water temperatures and EBCTs. The pseudo-first-order biodegradation rate constants ($k_{bio}$) of 7 HNMs ranged from $0.0797{\sim}0.7657min^{-1}$ at $10^{\circ}C$ to $0.1245{\sim}1.8421min^{-1}$ at $25^{\circ}C$. By increasing the water temperature from $10^{\circ}C$ to $25^{\circ}C$, the biodegradation rate constants ($k_{bio}$) were increased 1.6~2.4 times.

Structural Strength Analysis at Cushion Frame and Back Frame of Automotive Seat (자동차 시트 쿠션 프레임 및 백 프레임의 구조 강도 해석)

  • Kim, Sung-Soo;Kim, Key-Sun;Choi, Doo-Seuk;Park, Sang-Heup;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4956-4962
    • /
    • 2012
  • Among the various parts of automobile, automotive seat is the most fundamental item that ride comfort can be evaluated as the direct contact part with human body. Automotive seat must have the sufficient rigidity and strength at the same time with ride comfort. In this study, cushion frame and back frame at car seat are modelled with 3D. There are structural simulation analyses about 3 kinds of tests on torsion strength, vertical load strength and back frame strength. In the analysis result, the initial total deformation and the permanent total deformation has the maximum values of 5.4821 mm and 0.02539mm respectively at the torsion strength test of cushion frame. Total deformations at front and rear end parts of cushion frame become the values of 2.1159mm and 0.0606mm respectively at the test of vertical load strength of cushion frame. In case of more than this load, the maximum value of total deformation also becomes 3.1739mm. The maximum value of total deformation becomes 0.18634mm at 3 kinds of the strength tests on back frame. By the study result of no excessive deformation and no fracture cushion frame and back frame at automotive seat, the sufficient rigidity and strength to guarantee the safety of passenger can be verified.

Accumulation of mtDNA Deletion (${\Delta}mtDNA^{4977}$) showing Tissue-Specific and Age-Related Variation (조직별 및 나이에 따른 마이토콘드리아 DNA 결손 (${\Delta}mtDNA^{4977}$)의 축적)

  • Jeong, Hye-Jin;Chung, Hyung-Min;Cho, Sung-Won;Kim, Hyun-Ah;Lee, Kyung-Sool;Kwon, Hwang;Choi, Dong-Hee;Kwak, In-Pyung;Yoon, Tae-Ki;Lee, Sook-Hwan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.3
    • /
    • pp.203-206
    • /
    • 2003
  • Objectives: Controversial arguments exists on both the case for and against on the accumulation of mitochondrial DNA (mtDNA) deletion in association to tissue and age. The debate continues as to whether this mutation is a major contributor to the phenotypic expression of aging and common degenerative diseases or simply a clinical insignificant epiphenomenon. The objective of this study was to determine whether the accumulation of mtDNA deletion is correlated with age-related and tissue-specific variation. Materials and Methods: One hundred and fifty-seven tissues from blood, ovary, uterine muscle, and abdominal muscle were obtained from patients ranging in age from 31$\sim$60 years. After reviewing the clinical reports, patients with mitochondrial disorder were excluded from this study. The tissues were obtained at gynecological surgeries with the consent of the patient. Total DNA isolated from blood, ovary, uterine muscle, and abdominal muscle was amplified by two rounds of PCR using two pairs of primers corresponding to positions 8225-8247 (sense), 13551-13574 (antisense) for the area around deleted mtDNA and 8421-8440 (sense), 13520-13501 (antisense) for nested PCR product. A statistical analysis was performed by $x^2$-test. Results: About 0% of blood, 94.8% of ovary, 71.4% of uterine muscle, and 86.1% abdominal muscle harbored mtDNA deletion. When we examined the proportion of deleted mtDNA according to age deletion rate was 90% of ovary, 63.6% of uterine muscle, 77.7% of abdominal muscle in thirties and 100% of all tissue in fifties. Conclusion: The findings of this study suggest that the mtDNA deletion is varied in tissue-specific pattern and increases with aging.