• Title/Summary/Keyword: 802.11e

Search Result 232, Processing Time 0.024 seconds

Pareto Optimized EDCA Parameter Control for Wireless Local Area Networks

  • Kim, Minseok;Oh, Wui Hwan;Chung, Jong-Moon;Lee, Bong Gyou;Seo, Myunghwan;Kim, Jung-Sik;Cho, Hyung-Weon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3458-3474
    • /
    • 2014
  • The performance of IEEE 802.11e enhanced distributed channel access (EDCA) is influenced by several interactive parameters that make quality of service (QoS) control complex and difficult. In EDCA, the most critical performance influencing parameters are the arbitration interframe space (AIFS) and contention window size (CW) of each access category (AC). The objective of this paper is to provide a scheme for parameter control such that the throughput per station as well as the overall system throughput of the network is maximized and controllable. For this purpose, a simple and accurate analytical model describing the throughput behavior of EDCA networks is presented in this paper. Based on this model, the paper further provides a scheme in which a Pareto optimal system configuration is obtained via an appropriate CW control for a given AIFS value, which is a different approach compared to relevant papers in the literature that deal with CW control only. The simulation results confirm the effectiveness of the proposed method which shows significant performance improvements compared to other existing algorithms.

Early Drop Scheme for Enhancing Quality of H.264 Video Delivery in Wireless Mesh Networks (무선 메쉬 네트워크에서 H.264 비디오 전송 품질 향상을 위한 Early Drop 기법)

  • Lee, Soo-Yong;Yang, Gi-Won;Yoon, Yo-Haan;Kim, Myung-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06d
    • /
    • pp.149-152
    • /
    • 2011
  • 본 논문에서는 무선 메쉬 네트워크에서 H.264 비디오 코딩을 이용한 대화형 멀티미디어 전송시 서비스 품질을 향상시키기 위한 Early Drop 기법을 제안한다. Early Drop 기법은 비디오 프레임의 재생시간과 H.264로 부호화된 비디오 프레임의 중요도를 고려하여 네트워크 혼잡 시 발생하는 큐잉 지연과 큐 오버플로우로 인한 비디오 서비스 품질 저하를 효과적으로 개선하기 위해 개발되었다. 계층간 최적화(Cross-Layer)기법을 사용하여 각 비디오 패킷 별로 재생시간까지 남은 시간을 의미하는 delay budget을 할당하고 전송 중 재생시간 초과로 인해 목적지 노드에서 재생되지 못하는 비디오 패킷을 전송 초기 손실 시켜 무선대역폭 낭비와 전송 지연을 최소화 한다. 또한, H.264 비디오 프레임 종류별 중요도를 고려하여 차별화 된 delay budget을 할당해 중요도가 높은 비디오 프레임의 전송을 보장하여 비디오 전송 품질을 높인다. 성능 검증을 통해 네트워크 혼잡 시 Early Drop 기법은 기존에 제안된 IEEE 802.11e 기반의 H.264 비디오 전송기법과 비교하여 전송지연과 프레임 손실률을 최소화해 향상된 비디오 품질을 보였다.

A Performance Analysis of DFWMAC Protocols in Short-Distance Wireless Data Transmission Using Military Radio (군용 무전기를 이용한 근거리 무선 데이터 전송에서의 분산 매체 접근 제어 방식의 성능 분석)

  • 이성규;최영윤
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.117-130
    • /
    • 1999
  • In this paper, the performance of data communication function of military radio equipment P-999K is analyzed based on the standard CSMA/CA protocol which is DFWMAC standard protocol done by IEEE802.11 work group. Basic three standard protocols, i.e. Basic CSMA/CA, Stop & Wait ARQ and 4-Way Handshake CSMA/CA protocols are analyzed and compared with each other under the hidden terminal environment. The computer simulation is also done by using SIMSCRIPT II.5 which is popular software tool for an independent processing. The results show that p-persistent(with p=0.3) CSMA scheme is superior to non-persistent CSMA scheme with non-hidden terminal condition, but the performances of both schemes are almost same with hidden terminal situation. And the results of computer simulations are also showed that Basic CSMA/CA protocol is superior to the other protocols when the ratio of hidden terminals is below 10 % of total user population, however, with the above 20% hidden terminals environment and the higher offered traffic conditions the 4-Way Handshake CSMA/CA protocol shows the most superior performance.

  • PDF

Contention Window Tuning Scheme for Providing Differentiated QoS in Wireless LANs (무선 랜에서 차별화된 서비스 품질 제공을 위한 경쟁윈도우 설정 방법)

  • Ha, Seongwoo;Kim, Sunmyeng
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.387-389
    • /
    • 2015
  • IEEE 802.11e EDCA(Enhanced Distributed Channel Access)는 4개의 AC(Access Category)를 이용하여 트래픽에 따른 우선순위를 부여하고 QoS(Quality of Service)를 제공하기 위해 표준화되었다. EDCA는 이진 백오프 알고리즘을 갖는 CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance) 방법을 이용한다. EDCA에서 패킷 전송에 실패할 경우 경쟁 윈도우 값은 두 배씩 증가 되고, 성공할 경우에는 최소 경쟁 윈도우 값으로 초기화된다. 따라서 경쟁 윈도우 값이 최적의 값을 유지하지 못해 많은 패킷 충돌을 야기하여 네트워크 성능을 감소시킨다. 이 문제를 해결하기 위해 기존에 제안된 논문에서는 패킷 전송 성공 후 경쟁 윈도우 값을 최소 경쟁 윈도우 값이 아닌 채널 혼잡 정도에 따라 계산된 값으로 설정한다. 그러나 이 방법은 트래픽 종류와 상관없이 같은 방법으로 동작하기 때문에 트래픽 종류에 따른 차별적 QoS를 보장하지 않는다. 또한 계산된 경쟁 윈도우 값은 현재 값에 비해 상대적으로 낮은 값을 갖기 때문에 여전히 높은 충돌율을 갖는다. 본 논문에서는 이 문제를 해결하기 위해 새로운 프로토콜을 제안한다. 제안된 방법에서는 네트워크의 혼잡 정도를 잘 반영하기 위한 새로운 경쟁 윈도우 계산 알고리즘을 제시한다. 또한 제안된 알고리즘은 트래픽 종류에 따른 QoS 보장을 위해 트래픽 종류에 따른 차별화 파라미터를 이용한다.

A Study on Nonlinear Distortion Analysis of Power Amplifier using the OFDM for WLAN System (무선랜 시스템에서 OFDM 방식을 사용한 전력증폭기의 비선형 왜곡분석에 관한 연구)

  • Oh Chung-Gyun;Kim Dong-Ok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.2 no.4
    • /
    • pp.42-51
    • /
    • 2003
  • In this paper, we are going to analyze on relation of an output spectrum along phase distortion of power amplifier in wireless LAN system, and then considered an ACPR characteristic of power amplifier and consideration of an OFDM method for this. Also, we did implementation for OFDM modulation and transmission section of an IEEE 802.11a standard to have transmission speed of the maximum 54Mbps in order to know an OFDM modulation method and relation of non-linear characteristic of power amplifier. The non-linear characteristic of power amplifier did modeling with AM-to-AM and AM-to-PM, and we analyzed an output spectrum characteristic along phase distortion composed input signal supply for power amplifier. When output spectrum analysis results phase distortion increased, and an AM-to-PM characteristic of power amplifier in 5 degrees, the output spectrum was satisfied with a demand spectrum in P1 dB, but 10-20 degrees were able to confirm what cannot be satisfied with a demand spectrum in phase distortion. Also, an output spectrum of power amplifier by frequency re-growth generated by a non-linear characteristic of power amplifier did not satisfied in P1dE. therefore, a back-off value was requested according to an AM-to-PM distortion degree, and smaller back-off value were able to know what demand became in case of modulation section that used OFDM.

  • PDF

Modeling and Analysis of Wireless Lan Traffic (무선 랜 트래픽의 분석과 모델링)

  • Yamkhin, Dashdorj;Lee, Seong-Jin;Won, You-Jip
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.667-680
    • /
    • 2008
  • In this work, we present the results of our empirical study on 802.11 wireless LAN network traffic. We collect the packet trace from existing campus wireless LAN infra-structure. We analyzed four different data sets: aggregate traffic, upstream traffic, downstream traffic, tcp only packet trace from aggregate traffic. We analyze the time series aspect of underlying traffic (byte count process and packet count process), marginal distribution of time series, and packet size distribution. We found that in all four data sets there exist long-range dependent property in byte count and packet count process. Inter-arrival distribution is well fitted with Pareto distribution. Upstream traffic, i.e. from the user to Internet, exhibits significant difference in its packet size distribution from the rests. Average packet size of upstream traffic is 151.7 byte while average packet size of the rest of the data sets are all greater than 260 bytes. Packets with full data payloads constitutes 3% and 10% in upstream traffic and the downstream traffic, respectively. Despite the significant difference in packet size distribution, all four data sets have similar Hurst values. The Hurst alone does not properly explain the stochastic characteristics of the underlying traffic. We model the underlying traffic using fractional-ARIMA (FARIMA) and fractional Gaussian Noise (FGN). While the fractional Gaussian Noise based method is computationally more efficient, FARIMA exhibits superior performance in accurately modeling the underlying traffic.

A Design of Bandwidth Allocation Scheme with Priority Consideration for Upstream Channel of Ethernet PON (Ethernet PON에서 서비스 클래스별 우선 순위를 고려한 상향 채널 대역 할당 기법)

  • 이호숙;유태환;문지현;이형호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.859-866
    • /
    • 2003
  • In this paper, we designed the bandwidth allocation scheme with priority consideration for upstream channel access of EthernetPON. The objective of our scheme is to control the multi services in more effective way according to their CoS(Class of Service) or QoS(Quality of Service). The designed scheme considers transmission priority in the both side of OLT and ONU. In the OLT's view, the Two-step scheduling algorithm is applied with which we can support multiple bandwidth allocation policies simultaneously, i.e. SBA for the time-sensitive, constant rate transmission services and DBA for the best-effort services. This Two-step scheduling algorithm reduces the scheduling complexity by separating the process of transmission start time decision from the process of grant generation. In the ONU's view, the proposed scheme controls 8 priority queues of the 802.1d recommended 8 service classes. Higher priority queue is serviced in prior during the allowed GATE time from OLT. The OPNET modeling and simulation result compares the performance of each bandwidth allocation policy with SBA or DBA only approach.

Design and Fabrication of Wireless LAN for Miniaturized Microstrip Antenna (소형화를 위한 무선랜 대역의 마이크로스트립 안테나 설계 및 제작)

  • Lee Won-Jong;Kim Yong-Kyun;Kang Suk-Youb;Lee Hwa-Choon;Yoon Cheul;Park Hyo-Dal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.906-912
    • /
    • 2006
  • In this paper, N-shaped slot antenna for $5.15GHz{\sim}5.35GHz$ is designed, fabricated, and measured. The prototype consist of meander corrugated N-shaped slot. To obtain suitable bandwidth, the form layer is inserted between ground plane and substrate. Important parameters in the design are N-slot length, width, position, air-gap height, and feed point position. From these parameters optimized, a four N-shaped slot antenna is fabricated and measured. The measured results of the antenna are obtained as follows results. The resonant frequency of the fabrication N-shaped slot antenna is 5.25GHz bandwidth for approximately 300MHz(VSWR<2.0) and the gain is $1.3{\sim}2.64dBi$. The experimental far-field patterns are stable across the pass band. The 3dB bandwidth in H-Plane and E-Plane are $80.21^{\circ}\;and\;103.38^{\circ}$, respectively.

A New Interference-Aware Dynamic Safety Interval Protocol for Vehicular Networks

  • Yoo, Hongseok;Chang, Chu Seock;Kim, Dongkyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.2
    • /
    • pp.1-13
    • /
    • 2014
  • In IEEE 802.11p/1609-based vehicular networks, vehicles are allowed to exchange safety and control messages only within time periods, called control channel (CCH) interval, which are scheduled periodically. Currently, the length of the CCH interval is set to the fixed value (i.e. 50ms). However, the fixed-length intervals cannot be effective for dynamically changing traffic load. Hence, some protocols have been recently proposed to support variable-length CCH intervals in order to improve channel utilization. In existing protocols, the CCH interval is subdivided into safety and non-safety intervals, and the length of each interval is dynamically adjusted to accommodate the estimated traffic load. However, they do not consider the presence of hidden nodes. Consequently, messages transmitted in each interval are likely to overlap with simultaneous transmissions (i.e. interference) from hidden nodes. Particularly, life-critical safety messages which are exchanged within the safety interval can be unreliably delivered due to such interference, which deteriorates QoS of safety applications such as cooperative collision warning. In this paper, we therefore propose a new interference-aware Dynamic Safety Interval (DSI) protocol. DSI calculates the number of vehicles sharing the channel with the consideration of hidden nodes. The safety interval is derived based on the measured number of vehicles. From simulation study using the ns-2, we verified that DSI outperforms the existing protocols in terms of various metrics such as broadcast delivery ration, collision probability and safety message delay.

Investigation and Testing of Location Systems Using WiFi in Indoor Environments

  • Retscher, Guenther;Mok, Esmond
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.83-88
    • /
    • 2006
  • Many applications in the area of location-based services and personal navigation require nowadays the location determination of a user not only in outdoor environment but also indoor. To locate a person or object in a building, systems that use either infrared, ultrasonic or radio signals, and visible light for optical tracking have been developed. The use of WiFi for location determination has the advantage that no transmitters or receivers have to be installed in the building like in the case of infrared and ultrasonic based location systems. WiFi positioning technology adopts IEEE802.11x standard, by observing the radio signals from access points installed inside a building. These access points can be found nowadays in our daily environment, e.g. in many office buildings, public spaces and in urban areas. The principle of operation of location determination using WiFi signals is based on the measurement of the signal strengths to the surrounding available access points at a mobile terminal (e.g. PDA, notebook PC). An estimate of the location of the terminal is then obtained on the basis of these measurements and a signal propagation model inside the building. The signal propagation model can be obtained using simulations or with prior calibration measurements at known locations in an offline phase. The most common location determination approach is based on signal propagation patterns, namely WiFi fingerprinting. In this paper the underlying technology is briefly reviewed followed by an investigation of two WiFi positioning systems. Testing of the system is performed in two localization test beds, one at the Vienna University of Technology and the second at the Hong Kong Polytechnic University. First test showed that the trajectory of a moving user could be obtained with a standard deviation of about ${\pm}$ 3 m.

  • PDF