• Title/Summary/Keyword: 8-Hydroxyquinoline

Search Result 204, Processing Time 0.041 seconds

Determination of a Trace Amount of Copper, Lead, Cadmium and Zinc in Water by Solvent Extraction and Square Wave Polarography (溶媒抽出-矩形波폴라로그래피에의 물중의 미량 구리, 납, 카드뮴 및 아연의 定量)

  • Moon Su-Chan
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.372-378
    • /
    • 1977
  • The following new techniques have been developed: (A); To a 500ml of sample water, it was adjusted pH 10 with ammonia-anmonium citrate, added 10ml of 1${\%}$ sodium diethyldithiocarbamate and extracted three times with 10ml of CHCl3. The extract was shaken with 10ml of 0.05N $HCl-4{\times}10^{-4}M\;HgCl_2$. The aqueous solution was added 2ml of 2N KCl and washed two times with 10ml of pure $CHCl_3$, and then recorded square wave polarograms. (B); To a 500ml of sample water adjusted pH 10 with ammonia-ammonium citrate, it was added 2ml of 1${\%}$ 8-hydroxyquinoline and extracted three times with 10ml $CHCl_3$. The separated $CHCl_3$ phase was shaken with 10ml of 0.2 N HCl. The aqueous solution was recorded polarograms directly. These methods can be used for determination of the ppb order of metal in water with an error of ${\pm}10{\%}$. The method (B) can not be used for the determination of zinc on account of the free 8-hydroxyquinoline.

  • PDF

Metal-Nitrosyl Complexes (I) Synthesis and Characterization of Dinitrosylmolybdenum (O) Complexes (금속-니트로실 착물 (제 1 보) 디니트로실몰리브덴(O) 착물의 합성과 특성)

  • Oh Sang-Oh;Mo Seong-Jong
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.661-668
    • /
    • 1992
  • The polymeric compound [{Mo(NO)_2Cl_2}n] was prepared by reductive nitrosylation of NaNO_2 and acidified FeSO_4 with MoCl_5. The reactions of [{Mo(NO)_2Cl_2}n] with unidentate and bidentate ligands afforded neutral monomeric $[Mo(NO)_2Cl_2L_2(or L-L)] in high yield (80∼90%). 3,5-Lutidine, {\gamma}-Cyanopyridine, 1,2-Phenylenediamine, 1,10-Phenanthroline, sym-Diphenylethylenediamine, 9,10-Phenanthrenequinone, 1,3-Bis(diphenylphosphino)propane and 8-Hydroxyquinoline were used as coordinating ligands. The preparation and characterization of these dinitrosylmolybdenum complexes by elemental analysis, 1H NMR, infrared, and UV-Visible spectroscopy are reported. The infrared spectra indicate that in all of the compounds prepared, the NO groups occupy cis-positions in the octahedral group of ligands.

  • PDF

Metal-Nitrosyl Complexes(II) : Synthesis and Characterization of Dinitrosyltungsten(O) Complexes (금속-니트로실 착물 (제 2 보) : 디니트로실 텅스텐(O) 착물의 합성과 특성)

  • Sang-Oh Oh;Seong-Jong Mo
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.6
    • /
    • pp.906-913
    • /
    • 1992
  • The polymeric compound [{$W(NO)_2Cl_2$}$_n$] were prepared by reductive nitrosylation of $WNaNO_2$ and acidified $WFeSO_4$ with $WWCl_6$ at room temperature. The reactions of [{$W(NO)_2Cl_2$}$_n$] with unidentate and bidentate ligands afforded neutral monomeric [$W(NO)_2Cl_2L_2$(or L-L)] in a relative high yields (70$\sim$90%). 3,5-lutidine, ${\gamma}$-cyanopyridine, 1,2-phenylenediamine, 1,10-phenanthroline, sym-diphenylethylenediamine, 9,10-phenanthrenequinone, 1,3-bis(diphenylphosphino)propane, 1,1'-bis(diphenylphosphino)ferrocene and 8-hydroxyquinoline were used as coordinating ligands. These dinitrosyltungsten complexes were characterized by elemental analysis, $^1H$-NMR, infrared, and UV-visible spectroscopy are reported. The spectral data indicated that geometric structures of the products were cis-dinitrosyl-trans-dichloro-cis-$L_2$ of $C_{2v}$ symmetry.

  • PDF

Effect of Ph3PO or BCP Between Electron Transport and Emission Layers on the Driving Voltage of Organic Light Emitting Diode (전자수송층과 발광층 사이의 Ph3PO 혹은 BCP가 유기발광다이오드의 구동전압에 미치는 영향)

  • Ha, Mi-Young;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.678-681
    • /
    • 2011
  • We have investigated the effect of organic thin film on the driving voltage of OLED (organic light emitting diode) by inserting a 5 nm thick 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) or triphenylphosphineoxide ($Ph_3PO$) between tris-(8-hydroxyquinoline)aluminum ($Alq_3$) electron transport layer and 4,4'-bis(2,2'-diphyenylvinyl)-1,1'-biphenyl (DPVBi) emission layer. The device with 5 nm thick $Ph_3PO$ layer exhibited higher maximum current efficiency and lower driving voltage than the device with BCP layer, resulting from better electron injection from $Alq_3$ to DPVBi in the device with $Ph_3PO$ layer.

Reduction of Selected Carbonyl Compounds with 8-Oxyquinoline Dihydroboronite. Selective Reduction of Aldehydes in the Presence of Ketones

  • Kim, Sung-Gak;Yang, Sung-Bong;Kang, Ho-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.6
    • /
    • pp.240-244
    • /
    • 1984
  • 8-Oxyquinoline dihydroboronite is prepared by mixing equimolar amounts of 8-hydroxyquinoline and borane-dimethyl sulfide complex in tetrahydrofuran at room temperature and its structure is determined by spectroscopic methods. The reagent is shown to be an extremely mild reducing agent and reduces aldehydes, cyclohexanones, and acid chlorides to some extent. The reagent in the presence of 0.1 equiv of boron trifluoride etherate in tetrahydrofuran at room temperature reduces selectively aldehydes in the presence of ketones, while the reagent in the presence of 1 equiv of boron trifluoride etherate rapidly reduces simple aldehydes and ketones but does not reduce carboxylic acids, esters, and amides.

Searching of Possible Target Enzymes for Herbicide Development using Commercial Plant-Specific Inhibitors (식물 특정효소저해제의 생물활성 조사에 의한 신규제초제 작용점 탐색)

  • Hwan, In-Taek;Choi, Jung-Sup;Park, Sang-Hee;Lee, Kwan-Hwi;Lee, Byung-Hoi;Hong, Kyung-Sik;Cho, Kwang-Yun
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.1
    • /
    • pp.36-45
    • /
    • 2001
  • This study was conducted to search new target enzymes of novel herbicide candidate. Total of 107 biochemical inhibitors reported to inhibit over than 100 different plant enzymes were purchased from commercial chemical companies. 15 inhibitors and 34 enzymes were selected by germination assay, seedling assay, wheat leaf disc assay, and whole plant assay. Among them, seven compounds of purine, phehyl-hydrazine, o-phenanthroline, oleylamine, dicyclohexylcarbodiimide, 7,8-benzoquinoline, and aminooxyacetic acid showed high herbicidal activity in the whole plant assay under greenhouse while 7,8-benzoquinone, 8-hydroxyquinoline, 2,2'-dipyridyl, and o-phenanthroline inhibited seed germination of barnyardgrass, rice, and tomato at concentrations of 1.25 to $5{\mu}M$. The compounds of 7,8-benzoquinoline, chlorpromazine, cyanuric fluoride, 4-methylpyrazole, oleylamine, tranylcypromine, and trifluoperazine inhibited the growth of cyanobacteria at 30 to $100{\mu}M$. The compounds of dicyclohexylcarbodiimide and chlorpromazine exhibited whitening effect on tile wheat leaf disc at $100{\mu}M$. These results suggest that the plant-specific enzyme inhibitors which have biological activities may supply the target enzyme for developing new herbicide candidate.

  • PDF

Studies on the fungicidal action and its physico-chemical properties of phenylmercuric 8-oxyquinolinate (Phenylmercuric 8-oxyquinolinate의 살균작용 및 이의 이화학적 성질에 관한 연구)

  • Sohn C. Y.;Kang I. M.;Lee S. H.
    • Korean journal of applied entomology
    • /
    • v.4
    • /
    • pp.11-18
    • /
    • 1965
  • In order to investigate the fungicidal activities against various plant pathogenes, diminishing effect of plant transpiration, phytotoxicities, vapor effect and the rate of reduction by ultraviolet rays of phenylmercuric 8-oxyquinolinate(P.M.Q), this experiments were undertaken under various laboratory conditions. 1. Inhibitory activity on the spore germination of this chemical was shown less effective than that of P.M.A..(Table 2, Table 3, Table 4, Table 5 and Table 6) Also, P.M.Q. was resulted a somewhat higher inhibitory activity on the hyphae growth than P.M.A. (Table 7). 2. In the diminishing effect of plant transpiration, 8-hydroxyquinoline sulfate(oxine sulfate) was more strong inhibitory at first than P.M.Q., while, at last, P.M.Q. was more strong inhibitory in comparison with oxine sulfate(Table 8, Fig. 1 and Table 9). 3. P.M.Q. was shown less injury on the germination of rice plant seeds and the emergence of their roots than P.M. A.(Table 10). Injuries was not observed on the rice seedlings and soy-bean seedlings sprayed with 40 ppm of this chemical. 4. P.M.A. had more inhibitory effects on the mycelial growth of phytopathogenes than P.M.Q. on the vapor effect (Table 11, Fig. 2). 5. Biological activity and chemical decomposition rate of P.M.A. were greatly reduced by exposure of this compound to ultraviolet rays. But, P.M.Q. was only slightly affected by similar treatment(Table 12, Fig. 3, Table 13 and Fig. 4). From the above results, this chemical will be a promising fungicide adding fungitoxicities against various phytopatho genes, diminishing effect of plant transpiration and physico-stability.

  • PDF

Ir(ppy)3의 도핑 위치에 따른 유기 발광 다이오드의 특성 연구

  • Kim, Sun-Gon;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.151.2-151.2
    • /
    • 2015
  • 본 연구에서는 indium-tin-oxide(ITO)/1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile(HAT-CN)/N,N'-di(naphthalene-lyl)-N,N'-diphenyl-benzidine(NPB)/4,4'-Bis(N-carbazolyl)-1,1'-biphenyl(CBP)/2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)TPBi/tris-(8-hydroxyquinoline) aluminum($Alq_3$)/LiF/Al 구조를 가진 유기 발광 다이오드 소자의 발광층에 $Ir(ppy)_3$(2% wt)을 도핑하여 소자의 특성 변화를 살펴보았다. $Ir(ppy)_3$의 두께는 5nm이고 도핑 위치는 정공 수송층과 발광층 계면의 0nm에서부터 25nm까지 5nm간격으로 도핑을 하였다. 실험 결과 소자의 효율은 도핑 위치가 정공 수송층에서 25nm떨어진 위치일 때 가장 높았고, 10nm일 때 가장 낮았다. 이는 도핑 부분의 위치가 정공 차단층에 가까워질수록 정공과 전자의 균형이 좋아지는 것이 소자 성능을 향상시키는 원인으로 추측된다.

  • PDF

A Study on the Dielectric Polarization of $ITO/Alq_3/Al$ Structure Organic Light-emitting Diodes ($ITO/Alq_3/Al$ 구조 유기 발광 소자의 유전분극 현상의 연구)

  • Oh, Yong-Cheul;Shin, Cheol-Gi;Kim, Chung-Hyeak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.73-77
    • /
    • 2008
  • We have investigated dielectric polarization in organic light-emitting diodes using 8-hydroxyquinoline aluminum($Alq_3$) as an electron transport and emissive material. We analyzed the dielectric polarization of organic light-emitting diodes using characteristics of impedance and equivalent circuit of $ITO/Alq_3/Al$. Impedance characteristics was measured complex impedance Z and phase ${\theta}$ in the frequency range of $1{\times}40Hz\;to\;1{\times}10^8Hz$. We obtained complex electrical conductivity, dielectric constant, and loss tangent(tan${\delta}$) of the device at room temperature. And, we obtained the equivalent circuit of $ITO/Alq_3/Al$ through analyzing dielectric constant and dielectric loss tangent. From these analyses, we could interpret a conduction mechanism and dielectric polarization.

Effect of Genotoxicity or Carcinogenecity Chemicals on the ROS Production (유전독성, 발암성 화학물질이 ROS 생성에 미치는 영향)

  • Go, Seo-Youn;Sheen, Yhun-Yhong
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.1
    • /
    • pp.23-32
    • /
    • 2008
  • In the present study, ROS detection of L5178Y cells that were treated with twenty test compounds in order to find out hydrogen peroxide ($H_2O_2$) induction for genotoxicity and carcinogenic toxicity. Twenty test compounds were consist of four classes, such as genotoxic carcinogens, genotoxic noncarcinogens, nongenotoxic carcinogens, and nongenotoxic noncarcinogens. Genotoxic carcinogens are 1,2-dibromoethane, glycidol, melphalan, diethylstilbestrol and urethane. Genotoxic noncarcinogens are 8-hydroxyquinoline, emodin, acetonitrile and diallylphthalate, L-ascorbic acid. Nongenotoxic carcinogens are methyl carbamate, O-nitrotoluene, 1,4-dioxane, tetrachloroethylene and 2,3,7,8-tetrachlorodibenzo-p-dioxin. And nongenotoxic noncarcinogens are D-mannitol, 1,2-dichlorobenzene, caprolactam, bisphenol A and chlorpheniramine maleate.