• 제목/요약/키워드: 8 DOF Vehicle Model

검색결과 20건 처리시간 0.021초

퍼지논리를 이용한 차량 구동력 제어 시스템 (Vehicle Traction Control System using Fuzzy Logic Theory)

  • 서영덕;여문수;이승종
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.138-145
    • /
    • 1998
  • Recently, TCS(Traction Control System) is attracting attention, because it maintains traction ability and steerability of vehicles on low-$\mu$ surface roads by controlling the slip rate between tire and road surface. The development of TCS control law is difficult due to the highly nonlinearity and uncertainty involved in TCS. A fuzzy logic approach is appealing for TCS. In this paper, fuzzy logic controller for TCS is introduced and evaluated by the computer simulation with 8 DOF vehicle model. The result indicate that the fuzzy logic TCS improves vehicle's stability and steerability.

  • PDF

운전자 모델을 사용한 차량의 조향특성 시뮬레이션 (Vehicle Steering Characteristics Simulation by a Driver Model)

  • 이종석;백운경
    • 동력기계공학회지
    • /
    • 제7권3호
    • /
    • pp.61-68
    • /
    • 2003
  • Steering characteristics is an important factor in the evaluation of vehicle quality. To estimate steering characteristics in the vehicle conceptual design stage, vehicle dynamics simulation methods are very efficient. However, it is often difficult to simulate vehicle dynamics for the specific driving scenarios in open-loop driving environment. An efficient driver-in-the-loop vehicle model will be efficient for this job. A good tire model is also very important for the accurate vehicle dynamics simulation. In this research, a driver model is used to simulate vehicle steering dynamics for a 8-dof vehicle model with STI(Systems Technology, Inc.) tire model. For the demonstration of this model, a SUV(sports utility vehicle) and a sedan were simulated.

  • PDF

비선형 강인 내부루프 보상기를 이용한 6자유도 원격조종 수중로봇의 선형 모델예측 제어 (Linear Model Predictive Control of 6-DOF Remotely Operated Underwater Vehicle Using Nonlinear Robust Internal-loop Compensator)

  • 김준식;최유나;이동철;최영진
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.8-15
    • /
    • 2024
  • This paper proposes a linear model predictive control of 6-DOF remotely operated underwater vehicles using nonlinear robust internal-loop compensator (NRIC). First, we design a integrator embedded linear model prediction controller for a linear nominal model, and then let the real model follow the values calculated through forward dynamics. This work is carried out through an NRIC and in this process, modeling errors and external disturbance are compensated. This concept is similar to disturbance observer-based control, but it has the difference that H optimality is guaranteed. Finally, tracking results at trajectory containing the velocity discontinuity point and the position tracking performance in the disturbance environment is confirmed through the comparative study with a traditional inverse dynamics PD controller.

초공동 수중운동체 주위 공동 특성과 추력 전산 해석 (Numerical Analysis of Cavity Characteristics and Thrust for Supercavitating Underwater Vehicle)

  • 김동현;박원규
    • 한국해양공학회지
    • /
    • 제31권1호
    • /
    • pp.8-13
    • /
    • 2017
  • Cavitation is used in various fields. This study examined the drag reduction of an underwater vehicle using cavitation. In this study, the natural partial cavitation analysis results were verified using CFD code with the Navier-Stokes equation based on a mixture model. The momentum and continuity equations in the mixture phase were separately solved in the liquid and vapor phases. The solver employs an implicit preconditioning algorithm in curvilinear coordinates. The results of a computational analysis showed good agreement with the experiment. A computational analysis was also performed on the supercavity. The study investigated the cavity characteristics and drag of an underwater vehicle and studied the speed required to achieve a supercavity. Finally, a 1DOF analysis was carried out to investigate the thrust system for a supercavity. As a result, one of the methods for determining a suitable thrust system for a supercavitating underwater vehicle was presented.

이동차량하중에 의해 발생되는 교량진동음압의 매개변수 분석 (Parameter Analysis of Sound Radiation for Bridges Under Moving Vehicles)

  • 이용선;김상효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.772-777
    • /
    • 2006
  • An acoustic finite element model of a bridge is developed to evaluate the noise generated by the traffic-induced vibration of the bridge. The dynamic response of a multi-girder bridge, modeled by a 3-dimensional frame element model, is analyzed with a 3-axle(8DOF) truck model and a 5-axle(l3DOF) semi-trailer. The flat plate element is used to analyze the acoustic pressure due to the fluid-structure interactions between the vibrating surface and contiguous acoustic fluid medium. The radiation fields of noise with a specified distribution of vibrating velocity and pressure on the structural surface are also computed using the Kirchhoff-Helmholtz integral. In an attempt to illustrate the influence of the structural vibration noise of a bridge to total noise level around the bridge, the random function is used to generate the vehicle noise source including the engine noise and the rolling noise interacting between the road and tire. Among the diverse parameters affecting the dynamic response of bridge, the vehicle velocity, the vehicle weight, the spatial distribution of the road surface roughness, the stiffness degradation of the bridge and the variation of the air temperature changing the air density are found to be the main factors that increase the level of vibration noise. Consequently, The amplification rate of noise increases with the traveling speed and the vehicle weight.

  • PDF

차동 제동을 이용한 조향 제어 시뮬레이션 (Simulation of Vehicle Steering Control through Differential Braking)

  • 제롬살랑선네;윤여흥;장봉춘;이성철
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.65-74
    • /
    • 2002
  • This paper examines the usefulness of a Brake Steer System (BSS), which uses differential brake forces for steering intervention in the context of Intelligent Transportation Systems (ITS). In order to help the car to turn, a yaw moment can be achieved by altering the left/right and front/rear brake distribution. This resulting yaw moment on the vehicle affects lateral position thereby providing a limited steering function. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. A 8-DOF nonlinear vehicle model including STI tire model will be validated using the equations of motion of the vehicle. Then a controller will be developed. This controller, which will be a PID controller tuned by Ziegler-Nichols, will be designed to explore BSS feasibility by modifying the brake distribution through the control of the yaw rate of the vehicle.

원격조종 비행체의 이상허용 제어 (Fault tolerant control for remotely piloted vehicle)

  • 김대우;손원기;권오규
    • 제어로봇시스템학회논문지
    • /
    • 제5권6호
    • /
    • pp.683-690
    • /
    • 1999
  • This paper deals with a fault-tolerant control method for robust control of RPV(Remotely Piloted Vehicle). To design the flight control system, the 6-DOF simulation program has been developed based on the dynamic model of RPV. A robust fault detection and diagnosis method proposed by Kwon et al. [8]-[10] is adopted to detect the actuator fault of RPV and to make the controller reconfiguration. The Hoo control method is applied to the flight control system. An integrated simulation for performance evaluation of the fault-tolerat\nt control system designed is performed via 6 DOF simulation and shows that the control system works even under the actuator fault.

  • PDF

차량 성능 및 안정성 향상을 위한 $H_{\infty}$ 요 모멘트 강인제어 ($H_{\infty}$ Robust Yaw-Moment Control Based on Brake Switching for the Enhancement of Vehicle Performance and Stability)

  • 안우성;박종현
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.1899-1909
    • /
    • 2000
  • This paper proposes a new $H_{\infty}$ yaw moment control scheme using brake torque switching for improving vehicle performance and stability especially in high speed driving. In the scheme, one wheel is selected, depending on the vehicle states, at which a brake torque for control is applied. Steering angles are modeled as a disturbance to the system and the $H_{\infty}$ controller is designed to minimize the difference between the performance of the vehicle and that of the desired model. Its performance robustness as well as stability robustness to system parameter variations is assured through ${\mu}$-analysis. Various simulations with a nonlinear 8-DOF vehicle model show that proposed controller enhances the vehicle performance and stability under disturbances and parameter variations as well as under the normal driving condition.

Simulation of Vehicle Steering Control through Differential Braking

  • Jang, Bong-Choon;Yun, Yeo-Heung;Lee, Seong-Cheol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권3호
    • /
    • pp.26-34
    • /
    • 2004
  • This paper examines the usefulness of a Brake Steer System(BSS), which uses differential brake forces for steering intervention in the context of Intelligent Transportation Systems(ITS). In order to help the car to turn, a yaw moment control was achieved by altering the left/right and front/rear brake distribution. This resulting yaw moment on the vehicle affects lateral position thereby providing a limited steering function. The steering function achieved through BSS was used to control lateral position in an unintended road departure system. A 8-DOF nonlinear vehicle model including STI tire model was validated using the equations of motion of the vehicle. Then a controller was developed. This controller, which is a PID controller tuned by Ziegler-Nichols, is designed to explore BSS feasibility by modifying the brake distribution through the control of the yaw rate of the vehicle.

퍼지제어기를 이용한 차동브레이크 시스템의 능동 조향제어 (Active Handling Control of the Differential Brake System Using Fuzzy Controller)

  • 윤여흥;장봉춘;이성철
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.82-91
    • /
    • 2003
  • Vehicle dynamics control (VDC) has been a breakthrough and become a new terminology for the safety of a driver and improvement of vehicle handling. This paper examines the usefulness of a brake steer system (BSS), which uses differential brake forces for steering intervention in the context of VDC, In order to help the car to turn, a yaw moment can be achieved by altering the left/right and front/rear brake distribution. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. An 8-DOF non-linear vehicle model including STI tire model will be validated using the equations of motion of the vehicle, and the non-linear vehicle dynamics. Since fuzzy logic can consider the nonlinear effect of vehicle modeling, fuzzy controller is designed to explore BSS feasibility, by modifying the brake distribution through the control of the yaw rate of the vehicle. The control strategies developed will be tested by simulation of a variety of situation; the possibility of VDC using BSS is verified in this paper.