• Title/Summary/Keyword: 7.0 T MRI

Search Result 212, Processing Time 0.025 seconds

Ultrafast MRI and T1 and T2 Radiomics for Predicting Invasive Components in Ductal Carcinoma in Situ Diagnosed With Percutaneous Needle Biopsy

  • Min Young Kim;Heera Yoen;Hye Ji;Sang Joon Park;Sun Mi Kim;Wonshik Han;Nariya Cho
    • Korean Journal of Radiology
    • /
    • v.24 no.12
    • /
    • pp.1190-1199
    • /
    • 2023
  • Objective: This study aimed to investigate the feasibility of ultrafast magnetic resonance imaging (MRI) and radiomic features derived from breast MRI for predicting the upstaging of ductal carcinoma in situ (DCIS) diagnosed using percutaneous needle biopsy. Materials and Methods: Between August 2018 and June 2020, 95 patients with 98 DCIS lesions who underwent preoperative breast MRI, including an ultrafast sequence, and subsequent surgery were included. Four ultrafast MRI parameters were analyzed: time-to-enhancement, maximum slope (MS), area under the curve for 60 s after enhancement, and time-to-peak enhancement. One hundred and seven radiomic features were extracted for the whole tumor on the first post-contrast T1WI and T2WI using PyRadiomics. Clinicopathological characteristics, ultrafast MRI findings, and radiomic features were compared between the pure DCIS and DCIS with invasion groups. Prediction models, incorporating clinicopathological, ultrafast MRI, and radiomic features, were developed. Receiver operating characteristic curve analysis and area under the curve (AUC) were used to evaluate model performance in distinguishing between the two groups using leave-one-out cross-validation. Results: Thirty-six of the 98 lesions (36.7%) were confirmed to have invasive components after surgery. Compared to the pure DCIS group, the DCIS with invasion group had a higher nuclear grade (P < 0.001), larger mean lesion size (P = 0.038), larger mean MS (P = 0.002), and different radiomic-related characteristics, including a more extensive tumor volume; higher maximum gray-level intensity; coarser, more complex, and heterogeneous texture; and a greater concentration of high gray-level intensity. No significant differences in AUCs were found between the model incorporating nuclear grade and lesion size (0.687) and the models integrating additional ultrafast MRI and radiomic features (0.680-0.732). Conclusion: High nuclear grade, larger lesion size, larger MS, and multiple radiomic features were associated with DCIS upstaging. However, the addition of MS and radiomic features to the prediction model did not significantly improve the prediction performance.

Comparison of Standard and Specialized Readings in Routine Practice for the Assessment of Extraprostatic Extension of Prostate Cancer on MRI after Biopsy

  • Shin, Sung Hee;Kim, See Hyung;Ryeom, Hunkyu
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.3
    • /
    • pp.132-140
    • /
    • 2020
  • Purpose: To retrospectively determine whether specialized magnetic resonance imaging (MRI) reading performed by an experienced radiologist affected the successful assessment of extraprostatic extension (EPE) in the presence of biopsy-related hemorrhage after prostate biopsy. Materials and Methods: Two hundred consecutive patients with biopsy-proven prostate cancer underwent MRI. General radiologist and subspecialized radiologist readings were unpaired and reviewed in random order by a radiologist who was blinded to patients' clinical details and histopathologic data. The extent of hemorrhage was assessed on T1-weighted (T1W) MRI using a 1-4 scale, and the likelihood of EPE was assessed for each of the four categories. Histopathologic specimens served as the reference standard. The area under the curve (AUC) of the standard reading was compared to that of the specialized reading. Results: Post-biopsy hemorrhage was subjectively graded as ≥ 3 in 101 patients (50.5%) by standard reading, and in 100 patients (50.0%) by specialized reading. The standard and specialized readings disagreed for 40 (20.7%) of the patients (kappa [κ] = 0.35; 95% CI, 0.14-0.48). Of these, specialized reading was the correct interpretation for 21 patients (52.5%). The sensitivity (75% vs. 44%; P = 0.002) and area under the receiver operating characteristics (AUROC) (0.83 vs. 0.67; P = 0.008) of the specialized readings were significantly higher than those of the standard readings, while there was no significant difference in specificity (84% vs. 87%; P = 0.434). Conclusion: The reinterpretation of MRI by experienced radiologists significantly improves the diagnosis of EPE in prostate cancer in the presence of post-biopsy hemorrhage.

Quantitative Analysis of T1 Weighted Images due to Change in TI by Using the Inversion Recovery in 3.0T Brain MRI Examination

  • Han, Jung-Seok;Dong, Kyung-Rae;Chung, Woon-Kwan;Cho, Jae-Hwan;Shin, Jae-Woo;Kim, Young-Jae
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.158-162
    • /
    • 2012
  • Although 3.0T magnetic resonance imaging (MRI) has the advantages of a higher signal to noise ratio (SNR) and contrast than 1.5T MRI, there are limitations on the contrast between white and grey matter because of the long T1 recovery time when T1 images are obtained using the Spin Echo Technique. To overcome this, T1 weighted images are obtained occasionally using the inversion recovery (IR) technique, which employs a relatively long TR. The aim of this study was to determine the optimal TI in a brain examination when a T1 weighted image is obtained using the IR technique. Eight participants (male: 7, female: 1, average age: $34{\pm}14.11$) with a normal diagnosis were targeted from February 18, 2012 to February 27, 2012, and the contrast between white and grey matter as well as the contrast to noise ratio (CNRs) in each participant were measured. The CNRs of white matter and grey matter were highest at TI = 600, 650, 750, 900, 1050 and 1100 ms when the TR was 1100, 1400, 1700, 2000, 2300 and 2600 ms, respectively. Therefore, as the TIs were $44.425{\pm}0.877%$ of the TRs in the TR range of 1400-2300 ms, the optimal T1 weighted images that describe the contrast between white and grey matter can be obtained if the TIs are compensated for with $44.425{\pm}0.877%$ of the TRs in the time of setting TIs.

The Clinical Usefulness of Tc-99m ECD Brain SPECT in Acute Measles Encephalitis (홍역 후 발생된 급성 뇌염 진단시 Tc-99m ECD 뇌혈류 SPECT의 임상적 유용성)

  • Lim, Seok-Tae;Sohn, Myung-Hee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.4
    • /
    • pp.229-234
    • /
    • 2003
  • Purpose: Since the prognosis of measles encephalitis is poor, early diagnosis and proper management are very important to improve clinical outcomes. We compared Tc-99m ECD brain SPECT (SPECT) with MR imaging (MRI) for the detection of acute measles encephalitis. Materials and Methods: Eleven patients(M : F=4 : 7, age range 18 months-14 yrs) with acute measles encephalitis were enrolled in this studies. All of them underwent both MRI and SPECT. The results of SPECT were scored from 0 (normal) to 3 (most severe defect) according to perfusion state. We compared two image modalities for the detection of brain abnormality in acute measles encephalitis. Results: Seven of 11 patients (63.6%) revealed high signal intensity in the white matter on T2WI of MRI, on the other hand all patients (100%) showed hypoperfusion on SPECT. Severe perfusion deficits above score 2 were located with decreasing frequencies in the frontal lobe (81.8%), temporal lobe (72.7%), occipital lobe (27.3%), basal ganglia (27.3%), and parietal lobe (9.1%). Conclusion: We conclude that SPECT is more useful than MRI for the detection of brain involvement in patients with acute measles encephalitis.

Evaluation of Fibrosis in Liver Cirrhosis by Superparamagnetic Iron Oxide (SPIO)-Enhanced MR Imaging: Does the Radiological Non-Invasive Fibrosis Index Correlate with the Laboratory Non-Invasive Fibrosis Index? (Superparamagnetic Iron Oxide-Enhanced MRI를 이용한 간섬유화의 평가: 영상의학적 비침습적 간섬유화 지표가 AST/혈소판 비와 상관 관계가 있는가?)

  • Kim, Shin-Kee;Lee, Chang-Hee;Kim, Kyeong-Ah;Choi, Jae-Woong;Lee, Jong-Mee;Park, Cheol-Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.115-122
    • /
    • 2008
  • Purpose : To evaluate the correlation between the radiological non-invasive hepatic fibrosis index (RNHFI), as determined by SPIO-enhanced MRI, and the laboratory non-invasive hepatic fibrosis index. Materials and Methods : Patients (99 total: 61 men and 38 women; mean age: 58 years) who underwent SPIO-enhanced MRI (1.5T) during 5 years included. These patients were subdivided into a liver cirrhosis group (LCG) and a non-liver cirrhosis group (non-LCG). Using PACS view, we measured the RNHFI (mean standard deviation of hepatic signal intensity (SD), noise-corrected coefficient of variation (CV)) of three ROIs in the liver parenchyma by SPIO-enhanced MRI. The laboratory non-invasive hepatic fibrosis index (AST-platelet ratio index (APRI)) of all patients was calculated from the laboratory data. We compared the RNHFI and APRI of LCG with those of non-LC group using Student's t-test. A bivariate correlation was performed to investigate the relationship between the RNHFI and APRI in the LCG. Results : For the LCG, mean values of SD and CV by SPIO-enhanced MRI were $10.3{\pm}3.7$ and $0.19{\pm}0.08$, respectively. For the non-LCG, mean values of SD and CV were $6.5{\pm}1.6$ and $0.08{\pm}0.05$, respectively. The mean APRI of the LCG and the non- LCG were $2.04{\pm}1.7$ and $0.32{\pm}0.32$, respectively. The RNHFI and APRI were significantly different between both groups (p<0.05). For the LCG, the bivariate correlation between SD and APRI revealed a statistically significant positive correlation (r=0.5, p<0.001). In both groups, there was no statistically significant correlation between CV and APRI. Conclusion: A measurement of SD can be a simple and useful method for the evaluation of hepatic fibrosis.

  • PDF

The Ability of Muscle Functional MRI to Detect the Slight Effect of Exercise on Trunk Muscle Activity

  • Tawara, Noriyuki
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.117-124
    • /
    • 2022
  • Purpose: In this study, we provide a way to assess even a slight effect of exercise on trunk-muscle activity. Materials and Methods: Seven healthy male participants (mean age, 24.7 ± 3.2 years; height, 171.2 ± 9.8 cm; and weight, 63.8 ± 11.9 kg) performed 15 sets of an exercise with 20 repetitions of 90° hip and right-knee flexion while lying supine. The exercise intensity was measured using the 10-point Rating of Perceived Exertion Scale after the first and 15th sets of exercises. Although cross-sectional areas and functional T2 mapping using ultrafast imaging (fast-acquired muscle functional magnetic resonance imaging, fast-mfMRI) have been proposed for imaging to evaluate exercise-induced muscle activity in real time, no previous studies have reported on the evaluation of trunk-muscle activity using functional T2 mapping. As a method for assessing trunk-muscle activity, we compared functional T2 mapping using ultrafast imaging (fast-mfMRI) with cross-sectional areas. Results: Although the muscle cross-sectional areas were increased by the exercise, there was no significant difference at rest. On the other hand, for all sets, the changes in T2 were significant compared with those at rest (P < 0.01). These results demonstrate that T2, calculated from fast-mfMRI images can be used to detect even a small amount of muscle activity induced by acute exercise, which was impossible to do with cross-sectional areas. Conclusion: Fast-mfMRI, which can also display functional information with detailed forms, enabled non-invasive real-time imaging for identifying and evaluating the degree of deep trunk-muscle activity induced by exercise.

Analysis of CT, MRI, DITI for the Diagnosis of Abdominal Obesity and Clinical Usefulness (복부 비만 진단을 위한 CT, MRI, DITI 분석 및 임상적 유용성)

  • Yeo, Jin-Dong;Jeon, Byeong-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.6
    • /
    • pp.252-259
    • /
    • 2011
  • This study was to find out the correlation between abdominal surface temperature and abdominal fat areas. CT and MRI methods have been used to assess abdominal fat area. Abdominal surface temperature according to abdominal fat area was also measured by DITI. 20 college students were selected as the subjects for the study. The results, showed that there were statistically different significance in abdominal fats measured by CT and MRI according to weight groups. Abdominal surface temperature gap were measured by DITI and there was a statistically significant difference in only T12 region. temperature gaps between weight groups were over $0.7^{\circ}C$. In conclusion, CT method is the most accurate method to measure abdominal fat. However, weak points are radiation exposure and high cost for study. The correlation between abdominal surface temperature and abdominal fat areas were strong. Therefore, DITI may be considered as useful convenient method to evaluate the abdominal obesity and clinical usefulness.

How to Combine Diffusion-Weighted and T2-Weighted Imaging for MRI Assessment of Pathologic Complete Response to Neoadjuvant Chemoradiotherapy in Patients with Rectal Cancer?

  • Jong Keon Jang;Chul-min Lee;Seong Ho Park;Jong Hoon Kim;Jihun Kim;Seok-Byung Lim;Chang Sik Yu;Jin Cheon Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.9
    • /
    • pp.1451-1461
    • /
    • 2021
  • Objective: Adequate methods of combining T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) to assess complete response (CR) to chemoradiotherapy (CRT) for rectal cancer are obscure. We aimed to determine an algorithm for combining T2WI and DWI to optimally suggest CR on MRI using visual assessment. Materials and Methods: We included 376 patients (male:female, 256:120; mean age ± standard deviation, 59.7 ± 11.1 years) who had undergone long-course CRT for rectal cancer and both pre- and post-CRT high-resolution rectal MRI during 2017-2018. Two experienced radiologists independently evaluated whether a tumor signal was absent, representing CR, on both post-CRT T2WI and DWI, and whether the pre-treatment DWI showed homogeneous hyperintensity throughout the lesion. Algorithms for combining T2WI and DWI were as follows: 'AND,' if both showed CR; 'OR,' if any one showed CR; and 'conditional OR,' if T2WI showed CR or DWI showed CR after the pre-treatment DWI showed homogeneous hyperintensity. Their efficacies for diagnosing pathologic CR (pCR) were determined in comparison with T2WI alone. Results: Sixty-nine patients (18.4%) had pCR. AND had a lower sensitivity without statistical significance (vs. 62.3% [43/69]; 59.4% [41/69], p = 0.500) and a significantly higher specificity (vs. 87.0% [267/307]; 90.2% [277/307], p = 0.002) than those of T2WI. Both OR and conditional OR combinations resulted in a large increase in sensitivity (vs. 62.3% [43/69]; 81.2% [56/69], p < 0.001; and 73.9% [51/69], p = 0.008, respectively) and a large decrease in specificity (vs. 87.0% [267/307]; 57.0% [175/307], p < 0.001; and 69.1% [212/307], p < 0.001, respectively) as compared with T2WI, ultimately creating additional false interpretations of CR more frequently than additional identification of patients with pCR. Conclusion: AND combination of T2WI and DWI is an appropriate strategy for suggesting CR using visual assessment of MRI after CRT for rectal cancer.

Improving Diagnostic Performance of MRI for Temporal Lobe Epilepsy With Deep Learning-Based Image Reconstruction in Patients With Suspected Focal Epilepsy

  • Pae Sun Suh;Ji Eun Park;Yun Hwa Roh;Seonok Kim;Mina Jung;Yong Seo Koo;Sang-Ahm Lee;Yangsean Choi;Ho Sung Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.4
    • /
    • pp.374-383
    • /
    • 2024
  • Objective: To evaluate the diagnostic performance and image quality of 1.5-mm slice thickness MRI with deep learningbased image reconstruction (1.5-mm MRI + DLR) compared to routine 3-mm slice thickness MRI (routine MRI) and 1.5-mm slice thickness MRI without DLR (1.5-mm MRI without DLR) for evaluating temporal lobe epilepsy (TLE). Materials and Methods: This retrospective study included 117 MR image sets comprising 1.5-mm MRI + DLR, 1.5-mm MRI without DLR, and routine MRI from 117 consecutive patients (mean age, 41 years; 61 female; 34 patients with TLE and 83 without TLE). Two neuroradiologists evaluated the presence of hippocampal or temporal lobe lesions, volume loss, signal abnormalities, loss of internal structure of the hippocampus, and lesion conspicuity in the temporal lobe. Reference standards for TLE were independently constructed by neurologists using clinical and radiological findings. Subjective image quality, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were analyzed. Performance in diagnosing TLE, lesion findings, and image quality were compared among the three protocols. Results: The pooled sensitivity of 1.5-mm MRI + DLR (91.2%) for diagnosing TLE was higher than that of routine MRI (72.1%, P < 0.001). In the subgroup analysis, 1.5-mm MRI + DLR showed higher sensitivity for hippocampal lesions than routine MRI (92.7% vs. 75.0%, P = 0.001), with improved depiction of hippocampal T2 high signal intensity change (P = 0.016) and loss of internal structure (P < 0.001). However, the pooled specificity of 1.5-mm MRI + DLR (76.5%) was lower than that of routine MRI (89.2%, P = 0.004). Compared with 1.5-mm MRI without DLR, 1.5-mm MRI + DLR resulted in significantly improved pooled accuracy (91.2% vs. 73.1%, P = 0.010), image quality, SNR, and CNR (all, P < 0.001). Conclusion: The use of 1.5-mm MRI + DLR enhanced the performance of MRI in diagnosing TLE, particularly in hippocampal evaluation, because of improved depiction of hippocampal abnormalities and enhanced image quality.

Intensity of Intraoperative Spinal Cord Hyperechogenicity as a Novel Potential Predictive Indicator of Neurological Recovery for Degenerative Cervical Myelopathy

  • Guoliang Chen;Fuxin Wei;Jiachun Li;Liangyu Shi;Wei Zhang;Xianxiang Wang;Zuofeng Xu;Xizhe Liu;Xuenong Zou;Shaoyu Liu
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1163-1171
    • /
    • 2021
  • Objective: To analyze the correlations between intraoperative ultrasound and MRI metrics of the spinal cord in degenerative cervical myelopathy and identify novel potential predictive ultrasonic indicators of neurological recovery for degenerative cervical myelopathy. Materials and Methods: Twenty-two patients who underwent French-door laminoplasty for multilevel degenerative cervical myelopathy were followed up for 12 months. The Japanese Orthopedic Association (JOA) scores were assessed preoperatively and 12 months postoperatively. Maximum spinal cord compression and compression rates were measured and calculated using both intraoperative ultrasound imaging and preoperative T2-weight (T2W) MRI. Signal change rates of the spinal cord on preoperative T2W MRI and gray value ratios of dorsal and ventral spinal cord hyperechogenicity on intraoperative ultrasound imaging were measured and calculated. Correlations between intraoperative ultrasound metrics, MRI metrics, and the recovery rate JOA scores were analyzed using Spearman correlation analysis. Results: The postoperative JOA scores improved significantly, with a mean recovery rate of 65.0 ± 20.3% (p < 0.001). No significant correlations were found between the operative ultrasound metrics and MRI metrics. The gray value ratios of the spinal cord hyperechogenicity was negatively correlated with the recovery rate of JOA scores (ρ = -0.638, p = 0.001), while the ventral and dorsal gray value ratios of spinal cord hyperechogenicity were negatively correlated with the recovery rate of JOA-motor scores (ρ = -0.582, p = 0.004) and JOA-sensory scores (ρ = -0.452, p = 0.035), respectively. The dorsal gray value ratio was significantly higher than the ventral gray value ratio (p < 0.001), while the recovery rate of JOA-motor scores was better than that of JOA-sensory scores at 12 months post-surgery (p = 0.028). Conclusion: For degenerative cervical myelopathy, the correlations between intraoperative ultrasound and preoperative T2W MRI metrics were not significant. Gray value ratios of the spinal cord hyperechogenicity and dorsal and ventral spinal cord hyperechogenicity were significantly correlated with neurological recovery at 12 months postoperatively.