• Title/Summary/Keyword: 7-dehydrocholesterol

Search Result 18, Processing Time 0.033 seconds

The Origin of Molluscs Sterol (1) The Sterol Compositon of Bivalves and Snails (연체동물의 스테롤의 기원에 관하여 (1) 2매패와 권패의 스테롤 조성의 차이)

  • JOH Yong Goe;KIM Yong Keun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.3
    • /
    • pp.185-193
    • /
    • 1976
  • The sterol compositions of the Pelecypoda, M. sultataria, S. sachalinensis, and the Gastropoda, H. discus hannai Inc, T. cornutus were investigated. The results areas follows: 1. The contents of the unsaponifiables and sterols of the Pelecypoda, M. sulcataria, S. sathalinensis, and the Gastropoda, H. discus hannai Ino, T. cornutus, are $12.0\%,\;11.8\%,\;and\;16.2\%,\;15.3\%$, respectively. 2. The complex sterols from the Pelecypoda and Gastropoda are well separated on Silica Gel HF 254 TLC impregnated with $15\%$ silver nitrate. 3. The prominent sterols of the Pelecypoda, M. sulcateria and S. sachalinensis, are 22-trans-24-norcholesta-5, $22-dien-3\beta-ol$ $3.0\%\;3.9\%$ 22-dehydrocholesterol $6.7\%,\;10.2\%$, cholesterol $39.0\%,\;48.6\%$ brassicasterol $14.1\%,\;13.8\%$ 24-methylenecholesterol $19.4\%,\;11.5\%$, stigmasterol $2.4\%,\;0\%$ $\beta-sitosterol\;10.5\%,\;11.9\%$, and fucosterol $4.3\%,\;0\%$. 4. Abalone, H. discus hannai Ino, and T. cornutus contain cholesterol $98.0\%,=97.5\% as main component with small amounts of 22-dehydrocholesterol, brassicasterol and desmosterol. In H. discus hannai rno, 24-methylenecholesterot and fucosterol are also found.

  • PDF

Studies on Lipids of Urechis unicintus -on the Composition of Lipids, Fatty acid and Sterol- (개불의 지질에 관한 연구 -지질, 지방산 및 Sterol 조성에 관하여-)

  • JOH Yong-Goe;KIM Kyung-Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.3
    • /
    • pp.255-259
    • /
    • 1983
  • This work was done in order to clarify the chemical characteristics, composition, fatty acid components and sterol components of the lipids from Urechis unicintus. The results obtained are summarized as follows ; 1. The lipid content, iodine value and unsaponifiable matter of the total lipids are 1.89, 111, and $14.3\%$, respectively. 2. The main components of the total lipids are phospholipids $39.8\%$, free sterol $27.7\%$ and triglyceride $21.4\%$, and two unidentified fractions are detected. 3. The main fatty acids of total lipids are $C_{20:4}(19.4\%),\;C_{16:0}(13.7\%),\;C_{20:1}(11.3\%)\;and\;C_{18:1}(10.4\%)$ 4. Sterols found are Cholesterol($57.6\%$), Brassicasterol(?)($20.3\%$), 24-methylenecholesterol ($17.7\%$),22-dehydrocholesterol($3.0\%$)and 22.trans-24-norcholesta-5,22-dien-$3{\beta}$-ol(?)$1.4\%$.

  • PDF

A Case of Smith-Lemli-Opitz Syndrome in DHCR7 Mutation (DHCR 7 유전자 돌연변이로 확진된 스미스-렘리-오피츠 증후군 1례)

  • Jeong, Yu Ju;Huh, Rimm;Kwun, Younghee;Lee, Jieun;Cho, Sung Yoon;Ki, Chang-Seok;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.14 no.1
    • /
    • pp.60-65
    • /
    • 2014
  • Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive disease caused by a defect in cholesterol biosynthesis. This mutation encodes 7-dehydrocholesterol reductase (DHCR7), which is located on chromosome 11q13. It is characterized by typical facial appearances, microcephaly, small up-turned nose, cleft palate, syndactyly, and is correlated with cardiac, gastrointestinal and genital malformations. There may also be mental retardation, behavioral problems and growth retardation. It causes a broad spectrum of effects, ranging from a mild disorder of learning and behavior to a lethal malformation. There are four reports of Smith-Lemli-Opitz syndrome in Korean children. Here, we describe a two months old female with microcephaly, toe syndactyly and a cleft soft palate who was diagnosed as SLOS with c. 1054 C>T (p.R352W) and c.907G>A (p. G303R) mutations.

Vitamin D dependent rickets type I

  • Kim, Chan-Jong
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.2
    • /
    • pp.51-54
    • /
    • 2011
  • Vitamin D is present in two forms, ergocalciferol (vitamin $D_2$) produced by plants and cholecalciferol (vitamin $D_3$) produced by animal tissues or by the action of ultraviolet light on 7-dehydrocholesterol in human skin. Both forms of vitamin D are biologically inactive pro-hormones that must undergo sequential hydroxylations in the liver and the kidney before they can bind to and activate the vitamin D receptor. The hormonally active form of vitamin D, 1,25-dihydroxyvitamin D3 $[1,25(OH)_2D]$, plays an essential role in calcium and phosphate metabolism, bone growth, and cellular differentiation. Renal synthesis of $1,25(OH)_2D$ from its endogenous precursor, 25-hydroxyvitamin D (25OHD), is the rate-limiting and is catalyzed by the $1{\alpha}$-hydroxylase. Vitamin D dependent rickets type I (VDDR-I), also referred to as vitamin D $1{\alpha}$-hydroxylase deficiency or pseudovitamin D deficiency rickets, is an autosomal recessive disorder characterized clinically by hypotonia, muscle weakness, growth failure, hypocalcemic seizures in early infancy, and radiographic findings of rickets. Characteristic laboratory features are hypocalcemia, increased serum concentrations of parathyroid hormone (PTH), and low or undetectable serum concentrations of $1,25(OH)_2D$ despite normal or increased concentrations of 25OHD. Recent advances have showed in the cloning of the human $1{\alpha}$-hydroxylase and revealed mutations in its gene that cause VDDR-I. This review presents the biology of vitamin D, and $1{\alpha}$-hydroxylase mutations with clinical findings.

Studies on the Lipid Composition in Three Species of Shellfish (3종(種) 패류(貝類)의 지질조성(脂質組成)에 관한 연구(硏究))

  • Son, Young Ock;Ha, Bong Seuk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.4
    • /
    • pp.407-419
    • /
    • 1983
  • In this study, the lipid components of three species of shellfish included oyster(Crassostrea gigas), top shell(Turbo cornutus) representing salt water shellfish and corb shell(Corbicula fluminea producta) representing flesh water shellfish were analysed and nutriontional significances were discussed. Analysed the total lipid composition, and the fatty acid and sterol composition of total lipid were determined. The lipid was fractionated into three lipid classes neutral, glyco and phospholipid by column chromatography. The fatty acid composition of each lipid class and sterols were determined by gas liquid chromatography. The lipid components of total lipid and neutral lipid were estimated by thin layer chromatography and TLC scanner. The results were as follows: Total lipid contents of shellfish were 1.8% in oyster, 0.4% in top shell and 4.0% in corb shell. The contents of total fatty acid in total lipid were 80.7, 71.2 and 73.2%; and the contents of unsaponifiable matters were 15.4, 18.1 and 23.1% respectively. Total lipids were mainly composed of triglycerides, polar lipid-pigments and sterols as major component, and hydrocarbon-esterified sterols were determined in each sample. The major fatty acids in total lipid were palmitic(37.0%), eicosapentaenoic(13.5%) and linoleic acid(11.2%) in oyster, Octadecatetraenoic(15.8%), palmitic(11.2%), oleic(8.6%) and linoleic acid(8.1%) in top shell, but palmitic(34.0%), linoleic(12.3%) and paimitoleic acid(9.8%) in corb shell. Particularly, the contents of eicosapentaenoic acid of oyster and top shell were higher than those of corb shell. Sterol composition from three species of shellfish were mainly consisted of cholesterol (42.7~64.0%), brassicasterol(15.6~24.7%) and 24-methylenecholesterol (4.7~21.9%). But sitosterol (5.3%) was detected only in oyster and 22-dehydrocholesterol(12.9%) was only in top shell. The contents of fractionated neutral lipid was commonly higher than that of polar lipid in each sample. Glycolipid and phospholipid in polar lipid showed similar in quantity. The neutral lipids were composed of triglycerides(33.0~36.7%), free sterols(25.7~31.2%), esterified sterol(12.4~23.7%) and free fatty acids(5.1~11.7%). The contents of triglycerides and free sterols were higher than those of free fatty acids and esterified sterols. The major fatty acids in neutral lipid were palmitic(28.4~26.4%) eicosapentaenoic(18.6~21.9%) and linoleic acid(9.0~5.4%) in oyster and corb shell but octadecatetraenoic(14.5%), eicosapentaenoic (13.5%) and palmitic acid(12.3%) in top shell. The major fatty acids in glycolipid were eicosenoic(10.2%), palmitic(12.1%) and linolenic acid (10.2%) in oyster, Eicosenoic(26.0%), octadecatetraenoic(14.6.%) and eicosadienoic acid(12.9%) in top shell. But eicosadienoic(21.4%) stearic(14.6%), octadecatetraenoic(8.5%) and eicosenoic acid(8.5%) in corb shell. The major fatty acids in phospholipid were myristic(16.0%), stearic(10.6%), eicosenoic(10.5%) and palmitic acid(10.3%) in oyster, Oleic(22.2%), stearic(20.7%) and linolenic acid (11.8%) in top shell but eicosapentaenoic(25.1%), myristic(8.7%) and arachidonic acid(8.3%) in corb shell.

  • PDF

Studies on the Lipid of Aquatic Products (Part 4) On the Flesh Lipid Composition of Cephalopods (수산물의 지질에 관한 연구 (제4보) -두족류의 근육지질성분에 대하여-)

  • HA Bong-Seuk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.1
    • /
    • pp.59-73
    • /
    • 1982
  • Differences of lipids, especially total lipid composition, fatty acid and sterol composition of the flesh lipids between three species of cephalopods were investigated, since available researches concerning lipids in flesh tissues of the cephalopod are very limited. Extracted total lipid from the flesh tissues were fractionated by silicic acid column chromatography into three lipid classes of neutral lipids, glycolipids and phospholipids. The lipid compositions of total lipid and neutral lipids were estimated by the method of thin layer chromatography and TLC-scanner. The sterol compositions of unsaponifiable matters from total lipid were determined by using thin layer chromatography and gas-liquid chromatography. The fatty acid composition of each lipid class was also determined by gas-liquid chromatography. Total lipid contents of flesh tissues from three species of the cephalopods were 0.5 in Octopus vulgare, 0.8 in Octopus variabilis and $0.6\%$ in Loligo beka based on wet weight, the contents of total fatty acid in total lipid were 19.3, 47.8 and $38.4\%$, and the contents of unsaponifiable matters were 10.9, 18.8 and $41.1\%$, respectively. Total lipid was mainly composed of sterols and polar lipid-pigments as major components in each sample and the proportion of sterols and polar lipid-pigments to total lipid ranged from 27.0 to $35.5\%$ and 38.3 to $63.4\%$, respectively. The other lipid components of total lipid, e.g. triglycerides, free fatty acids, and carbohydrate-esterified sterols were determined as a minor components. The major component fatty acid in total lipid was palmitic acid and additionaly it chiefly consisted of the other unsaturated acids such as oleic, linoleic, octadecatetraenoic and eicosapentaenoic acid as major components of the acid. The compositions of sterol in three species of cephalopod were found to contain mainly cholesterol for its proportion to total sterols was 82.4 to $89.1\%$. However the other sterols such as 22-dehydrocholesterol and 24-methylenecholesterol were determined in addition to cholesterol as a minor components. The result of fractional composition of lipid class in total lipid was that total lipid had large .amount of polar lipid and small amount of nonpolar lipid i, e, neutral lipid in each sample, and the contents of phospholipid were higher than that of glycolipid in polar lipid. Neutral lipid was mainly composed of free sterol as major components in each sample and its proportion of free sterols to total neutral lipid was 50.0 to $70.5\%$. The other lipid components of neutral lipid showing similar in quantity, esterified sterols, free fatty acids and triglycerides were determined as a minor components. The major components fatty acid in neutral lipid were palmitic, oleic and hexadecadienoic acid. Palmitic acid was the most abundant and additionaly oleic, linoleic, octadecatetraenoic and myristic acid were the major component fatty acid in glycolipid. But, especially, glycolipid of Loligo beka contained a higher amount of arachidonic acid which also consists of major component in addition to those of acids. Palmitic acid was the most abundant and additionaly, oleic, linoleic and octadecatetraenoic acid were the major component fatty acids in phospholipid.

  • PDF

Comparison between the method of the measurement 25 Vitamin D3 (25 Vitamin D3 측정에 있어서 화학발광미세입자 측정법과 화학발광면역 측정법 간의 비교 및 고찰)

  • Kim, dae-won;Lee, jung-hee;Jung, an-na;Seo, so-yoen
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.112-114
    • /
    • 2015
  • Purpose Vitamin D to Anti- Rickets both steroid compounds showing activity, By acting on bone tissue secretary and the key to maintain serum Ca homeostasis. The blood level of vitamin D is the largest in D3 that the concentration of the metabolite is reflected in the holding state of vitamin D in vivo. Sunlight to change the 7-dehydrocholesterol in the skin and through the skin to D3, In the liver in combination with the D2 and D3 D4 changes. The Radioimmunoassay(RIA) method is measuring the D 3, the sensitivity can be measured also difficult trace substance to measure the normal test because it is very sensitive, but recently, a check is possible, for the Total D3 in Chemimicroparticle immunoassay(CMIA) or Chemiluminescent immunoassay(CLIA) measuring using microparticle RIA and CMIA(Architect i2000SR) / use the CLIA(DXI-800) method to compare and evaluate the correlation between the tests in the same test items. Materials and Methods Commissioned from January 2014 to March 2015 patients were enrolled in a total of 273 people. 29 out of 273 people conducted by RIA were compared with CMIA, 244 patients were compared with CLIA. Using reagents and equipment were used RIA(Diasource), CMIA(Architect i2000SR, Abbott Diagnostics) / CLIA( Unicel DXi-800, Beckman coulter). Results Correlation of the RIA and CLIA was a R2 = 0.1844 (y = 0.7303x + 3.9005), and the correlation of RIA CMIA is R2 = 0.2762 (y = 0.8862x + 4.56) respectively. (According to statistics, during the same period RIA is Deficiency 4.31%, Insufficiency 90.53%, Sufficiency 5.16%, was Excess 0%, CLIA / CMIA is Deficiency 17.02%, Insufficiency 75.91%, Sufficiency 7.03%, indicating the distribution of 0.03 % Excess) Conclusion Serum vitamin D and parathyroid hormone that show an inverse relationship, the level above which are not parathyroid hormone and vitamin D reduced the increase. The density is different for each study, at most 20 is reported to be the maximum between 30 ng / ml. In Korea it requires a proposed standard of vitamin D deficiency, reference to the WHO lack the case more than 10ng/ml, 20ng/ml and defined by the lack of, if not more than, the IOM, but looking at 12ng/ml or less to the normal to lack, at least 20ng/ml, the reference do not match the deficit under 20ng/ml, 21-29ng/ml relative lack between, was also defined as a sufficient condition for more than 30ng/ml. Although not statistically is between RIA and CLIA two ways to vitamin D levels change according to season match, when seasonally seen in summer as commonly known (April to September), winter (October to March) relative to the increase measured than it was found. Finally, the study on the correlation between the two methods have been expected to result in a consistent and apply the same view high reference value on the graph is difficult. However, there may be differences between the test equipment and methods, and could be especially the case of RIA method using an organic solvent is difficult to compare different methods and correlated view similar trend in vitamin D deficiency and quarterly aspect ratio.

  • PDF

Studies on the Processing of Low Salt Fermented Sea Foods 4. Processing of Low Salt Fermented Anchovy (저염수산발효식품의 가공에 관한 연구 4. 저염 멸치젓의 가공)

  • CHA Yong-Jun;PARK Hyang-Suk;CHO Soon-Yeong;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.4
    • /
    • pp.363-367
    • /
    • 1983
  • Low salt fermented products of anchovy, Engraulis japonica, caught in the coasts of East Sea of Korea, were prepared tentatively and also discussed the retarding effect of rancidity of the product by the addition of BHA or red pepper. Fresh anchovies were purchased from Kichang fish market. The raw samples were mixed with $8\%$ table salt, $0.5\%$ lactic acid, $6\%$ sorbitol, $4\%$ ethyl alcohol and $0.02\%$ BHA or $0.5\%$ red pepper and filled in the glass bottles and sealed with the cap. Conventional fermented product of anchovy as a control was prepared from fresh anchovy and $20\%$ salt only. After preparation, the products were fermented for 90 days at room temperature. Amino-nitrogen, TBA value, peroxide value and viable counts of bacteria of these products were determined and also evaluation of their qualify was compared with control product by sensory evaluation during fermentation. Amino-nitrogen contents of the low salt products reached a peak in 55 days of fermentation, and the volatile basic nitrogen contents ranged $100\;mg\%$ even after 90 days of fermentation. Thiobarbituric acid value of the product with $0.02\%$ BHA showed a little increase up to 65 days of fermentation regardless of salt contents, while that of the control product increased sharply up to 65 days and then decreased gradually. BHA was effective on retarding rancidity of fermented products of anchovy and red pepper was also slightly effective. All the products showed the highest cell population in about 55 days of fermentation. Judging from the results of analysis and sensory evaluation, the low salt fermented product of anchovy could be prepared with $8\%$ salt, $0.5\%$ lactic acid, $6\%$ sorbitol, $4\%$ ethyl alcohol and $0.02\%$ BHA or $0.5\%$ red pepper to the fresh round anchovy.

  • PDF