• Title/Summary/Keyword: 7 dBi gain

Search Result 221, Processing Time 0.025 seconds

Desing of an internal Antenna for Hepta-Band Using CPWG-fed (CPW급전 구조 Hepta-Band 내장형 안테나 설계 및 제작)

  • Han, Dong-Wan;Jeong, Gye-Taek;Lee, Cheon-Hee;Lee, Hwa-Choon;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9A
    • /
    • pp.934-940
    • /
    • 2008
  • In this paper, an antenna accessible to the Hepta-Band (GPS, DCS, PCS, UMTS, Wibro, Bluetooth and S-DMB) is designed and fabricated. To get broadband characteristics with small size, we propose a structure of Coplanar Waveguide-fed with Ground, which is based on a monopole antenna. Simulation is performed by adjusting the size of distance between a length of radiation patch and ground plane. The designed antenna satisfies the frequency bandwidth of 1.430Hz$\sim$2.9GHz(67.89%), the gain of $1.3{\sim}3.7dBi$ and an omni-directional radiation pattern at VSWR<2.

Substrate-integrated-waveguide cavity-backed circularly polarized antenna with enhanced bandwidth and gain

  • Shankaragouda M. Patil;Rajeshkumar Venkatesan
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.404-412
    • /
    • 2024
  • We propose a method for increasing the bandwidth of a substrate-integrated-waveguide (SIW) cavity-backed antenna with taper-based micro-strip SIW transition feeding. For radio transmission, a circular slot is etched on top of the SIW cavity. For optimal antenna design, the slot is etched slightly away from the cavity center to generate circularly polarized waves. Simulations show a wide axial ratio bandwidth of 7.860% between 11.02 GHz and 11.806 GHz. Experimental results confirm a similar wide axial ratio bandwidth of 4.9% between 10.8 GHz and 11.35 GHz. An SIW feed from an inductive window excites the radiating circular slot, resulting in a simulated wide impedance range of 1.548 GHz (10.338 GHz-11.886 GHz) and bandwidth of 13.93%. Experimental results show a wide impedance of 2.08 GHz (10.2 GHz-12.08 GHz) and bandwidth of 18.84%. The SIW cavity-backed antenna creates a unidirectional pattern, leading to gains of 6.61 dBi and 7.594 dBi in simulations and experiments, respectively. The proposed antenna was fabricated on a Rogers RT/Duroid 5880 substrate, and the reflection coefficient, radiation patterns, and gains were tested and compared using a computer simulator. The developed broadband antenna seems suitable for X-band applications.

Design of a CMOS Tx RF/IF Single Chip for PCS Band Applications (PCS 대역 송신용 CMOS RF/IF 단일 칩 설계)

  • Moon, Yo-Sup;Kwon, Duck-Ki;Kim, Keo-Sung;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.7 no.2 s.13
    • /
    • pp.236-244
    • /
    • 2003
  • In this paper, RF and IF circuits for mobile terminals which have usually been implemented using expensive BiCMOS processes are designed using CMOS circuits, and a Tx CMOS RF/IF single chip for PCS applications is designed. The designed circuit consists of an IF block including an IF PLL frequency synthesizer, an IF mixer, and a VGA and an RF block including a SSB RF mixer and a driver amplifier, and performs all transmit signal processing functions required between digital baseband and the power amplifier. The phase noise level of the designed IF PLL frequency synthesizer is -114dBc/Hz@100kHz and the lock time is less than $300{\mu}s$. It consumes 5.3mA from a 3V power supply. The conversion gain and OIP3 of the IF mixer block are 3.6dB and -11.3dBm. It consumes 5.3mA. The 3dB frequencies of the VGA are greater than 250MHz for all gain settings. The designed VGA consumes 10mA. The designed RF block exhibits a gain of 14.93dB and an OIP3 of 6.97dBm. The image and carrier suppressions are 35dBc and 31dBc, respectively. It consumes 63.4mA. The designed circuits are under fabrication using a $0.35{\mu}m$ CMOS process. The designed entire chip consumes 84mA from a 3V supply, and its area is $1.6㎜{\times}3.5㎜$.

  • PDF

A Compact Metamaterial Chip Antenna with Ground Coupling Structure for Bluetooth Application (Ground Coupling 구조를 이용한 초소형 Metamaterial Bluetooth 칩 안테나)

  • Park, Young-Hwan;Lee, Kang-Hee;Ji, Jeong-Keun;Ryu, Ji-Woong;Kim, Gi-Ho;Seong, Won-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.930-935
    • /
    • 2009
  • This paper describes a miniaturezed metamaterial BT chip antenna for mobile devices. The size of the proposed antenna is $3.0\;mm(W){\times}2.0\;mm(L){\times}1.2\;mm(H)$. And it is fabricated by chip type. The zeroth-order resonant properties are analyzed by magnitude and phase distributions of the surface current using surface current scanning system. The antenna offers omni-directional radiation patterns and measured 3D average gain is over - 1.7 dBi.

The Design of the Ka-band Lens Antenna for Navigation Radar on Helicopter (헬기 장착 항행 레이더용 Ka-대역 렌즈 안테나 설계)

  • Moon Sang-Man;Kim Hyounk-Young;Kim In-Kyu;Lee Sang-Jong;Kim Tae-Sik;Lee Hee-Chang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.4 s.19
    • /
    • pp.53-60
    • /
    • 2004
  • In this paper, the radar antenna of navigation radar on helicopter was suggested to Ka-band lens antenna. It is type of the streamlined convex lens to reduce the air resistivity when helicopter was navigated. Although aperture area is smaller than the standard antenna just like horns, the gain is higher and beamwidth is smaller than standard horns. We made the lens by using maximum flare angle of the horn and dielectric constant of the lens. As a result, when aperture diameter was 280mm and focal length was 145mm, the return loss -21.25dB, the gain was 32.2dBi, E and H beamwidth was $1.8^{\circ}$(E-plane), $1.4^{\circ}$(H-plane), nearly $1.5^{\circ}$, and side-lobe level was -18.4 dB(E-plane), -19.5dB(H-plane) lower were presented. So this suggested type can be used for the radar antenna of navigation radar on helicopter, and it will possible just a little some sidelobe suppression by using the choked horn as a feeder horn.

Stacked Slot Patch Antenna for Wireless Sensors Embedded in Concrete (콘크리트 매립 센서를 위한 이중 슬롯 패치 안테나)

  • Lee, Jae-Hyuk;Lee, Sung-Ho;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.12
    • /
    • pp.915-923
    • /
    • 2018
  • A concrete embedded antenna design is proposed for probing the durability of a building at an industrial scientific medical band of 902~908 MHz. The proposed antenna is designed with a stacked slot patch structure for lower impedance variation to a dielectric constant of concrete, as a dielectric constant difference is derived from the moisture content. The proposed structure has a wider bandwidth when a parasitic patch structure is used, which reduces antenna performance degradation resulting from the moisture content of concrete. The measured voltage standing wave ratio of the proposed structure is less than 2 and the beam width is approximately $80^{\circ}$, whereas the gain is greater than 7 dBi. The proposed antenna is fabricated with a rectangle-type concrete block, which is simulated and measured for return loss and antenna gain.

Design of Miniaturized Wideband Tapered Slot Antenna Using Slots Combining Fan-shaped Structures (부채꼴 구조를 조합한 슬롯을 이용한 소형 광대역 테이퍼드 슬롯 안테나 설계)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.629-634
    • /
    • 2023
  • In this paper, the design of a miniaturized wideband tapered slot antenna using slots combining various types of fan-shaped structures was studied. To miniaturize the tapered slot antenna and make it operate at low frequencies, slots combining fan-shaped structures were added to the ground plane of the tapered slot antenna. The miniaturization design process of the final proposed antenna was systematically explained by comparing the input reflection coefficient and gain variations when each fan-shaped structure was appended, compared to when there was no slot. The proposed miniaturized wideband tapered slot antenna using slots combining the fan-shaped structures was fabricated on an RF-35 substrate and its measured characteristics were compared with the simulation results. Experiment results show that the frequency band with a voltage standing wave ratio (VSWR) less than 2 was 2.59-11.39 GHz, and gain within the band was measured to be 3.3-7.0 dBi. The proposed miniaturized wideband tapered slot antenna can be reduced in size by 36.9%, compared to when there are no slots in the ground plane.

A dual-frequency and dual-polarization antenna with enhanced isolation between two ports using mushroom-like EBGs (버섯모양 EBG를 이용하여 두 포트 사이의 고립도를 향상시킨 이중대역 이중편파 안테나)

  • Lee, Dong-Hyun;Kim, Jae-Hee;Jang, Jong-Hoon;Park, Wee-Sang
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.5
    • /
    • pp.70-75
    • /
    • 2007
  • A dual-frequency dual-polarization (DFDP) antenna with high isolation between two ports by embedding $2{\times}1$ mushroom-like electromagnetic bandgap (EBG) cells is proposed. The equivalent circuit of a suspended microstrip line over $2{\times}1$ EBG cells is introduced. The numerical analysis from the equivalent circuit and measured results show that the microstrip line with embedded EBG cells has a distinctive and sharp rejection band and provides near 0 dB insertion loss outside the rejection band. By embedding the EBG cells under feedlines of a conventional DFDP antenna, the isolation between two ports of the antenna is enhanced more than 20 dB, as compared to that of a conventional DFDP antenna. The proposed DFDP antenna is fabricated and measured. The simulated and measured results show a good agreement. The measured polarization purity and gain of the antenna are 25 dB and 5.77 dBi at lower band, and 35 dB and 7.13 dBi at higher band, respectively.

The Design and Implementation of a Multi-Band Planar Antenna for Cellular/PCS/IMT-2000 Base Station (셀룰러/PCS/IMT-2000 기지국용 다중대역 평판 안테나 설계 및 구현)

  • 오경진;김봉준;최재훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.781-787
    • /
    • 2004
  • In this paper, a novel dual and wide band aperture stacked patch antenna for Cellular/PCS/IMT-2000 base station is presented. It consists of single microstrip patch having notches along the radiating patch, two dielectric substrates and a form material. To achieve wide band characteristic, we utilize the coupling effect between the notched patch and the resonant aperture in the ground plane and by properly cutting notches on the patch, an aperture stacked patch antenna could be designed to yield dual frequency operation. By the proper choice of resonant aperture size and height of a foam material, dual and wide band characteristic could be realized the measured impedance bandwidth(1:1.5 VSWR) of designed antenna at lower band(860 MHz) reaches 77 MHz and covers the Cellular CDMA band(824∼894 MHz). The measured impedance bandwidth(1:1.5 VSMR) of the designed antenna at upper band(1,960 MHz) is about 550 MHz and covers both the PCS band(1,750∼l,870 MHz) and the for-2000 band(1,920∼2,170 MHz). Good broadside radiation with high gain(5.65∼7.4 dBi) characteristics have also been observed.

Miniaturization of Ultra Wideband Log-Periodic Dipole Antenna for Leaked Electromagnetic Measurement (누설전자파 측정을 위한 초광대역 로그주기 안테나의 소형화)

  • Choi, Dong-Hoon;Kim, Tae-Hyung;Moon, Jun-Ho;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.10
    • /
    • pp.761-768
    • /
    • 2017
  • In this paper, to implement the electromagnetic wave environment and solve electromagnetic compatibility(EMC) problem, miniaturization of ultra-wide band log periodic dipole antenna for measurement was investigated. In addition, in oder to improve the signal-to-noise ratio in high frequency band, balun was connected to the antenna to stabilize the operation of the differential mode antenna and the single mode coaxial cable. To minimize the total size and to increase bandwidth of the antenna, a fat dipole structure was used for the resonance frequency band below 4 GHz and a general dipole shape was used for that above 4 GHz. The bandwidth of the proposed antenna was represented from 0.6 GHz to 8.0 GHz with a ratio bandwidth of 12.3 : 1. Measured peak gain varies from 5.7 dBi to 9.1 dBi, and a half power beamwidth was presented from $29.4^{\circ}$ to $100.2^{\circ}$ in operating range.